• Title/Summary/Keyword: 실내부하

Search Result 129, Processing Time 0.029 seconds

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

Planning Evacuation Routes with Load Balancing in Indoor Building Environments (실내 빌딩 환경에서 부하 균등을 고려한 대피경로 산출)

  • Jang, Minsoo;Lim, Kyungshik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.7
    • /
    • pp.159-172
    • /
    • 2016
  • This paper presents a novel algorithm for searching evacuation paths in indoor disaster environments. The proposed method significantly improves the time complexity to find the paths to the evacuation exit by introducing a light-weight Disaster Evacuation Graph (DEG) for a building in terms of the size of the graph. With the DEG, the method also considers load balancing and bottleneck capacity of the paths to the evacuation exit simultaneously. The behavior of the algorithm consists of two phases: horizontal tiering (HT) and vertical tiering (VT). The HT phase finds a possible optimal path from anywhere of a specific floor to the evacuation stairs of the floor. Thus, after finishing the HT phases of all floors in parallel the VT phase begins to integrate all results from the previous HT phases to determine a evacuation path from anywhere of a floor to the safety zone of the building that could be the entrance or the roof of the building. It should be noted that the path produced by the algorithm. And, in order to define the range of graph to process, tiering scheme is used. In order to test the performance of the method, computing times and evacuation times are compared to the existing path searching algorithms. The result shows the proposed method is better than the existing algorithms in terms of the computing time and evacuation time. It is useful in a large-scale building to find the evacuation routes for evacuees quickly.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

Extraction and Transfer of Gesture Information using ToF Camera (ToF 카메라를 이용한 제스처 정보의 추출 및 전송)

  • Park, Won-Chang;Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1103-1109
    • /
    • 2014
  • The latest CCTV camera are network camera in many cases. In this case when transmitting high-quality image by internet, it could be a large load on the internet because the amount of image data is very large. In this study, we propose a method which can reduce the video traffic in this case, and evaluate its performance. We used a method for transmitting and extracting a gesture information using ToF camera such as Kinect in certain circumstances. There may be restrictions on the application of the proposed method because it depends on the performance of the ToF camera. However, it can be applied efficiently to the security or safety management of a small interior space such as a home or office.

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

A Study of Performance Characteristics on Portable Air Conditioner by Using Condensation Water (응축수를 이용한 이동식 에어컨의 성능특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.762-767
    • /
    • 2012
  • This study presents the effect which the condensation water affects on performance characteristics of apparatus when the condensation water injects to the condenser. The experimental results are the following. The inlet outlet refrigerant temperature in condenser and outlet air temperature showed a little lower than that of the existing method. Also, the refrigeration capacity and COP(coefficient of performance) increased about 3%, 13~16% and the compressor work decreased about 27% than that of the conventional method. So, these results contribute not only the performance improvement of apparatus but also the solution of problem according to the discharge of periodic condensation water.