• Title/Summary/Keyword: 신형식 거더

Search Result 16, Processing Time 0.019 seconds

Dynamic Stability of a Railroad Bridge Using Bi-prestressing Technology (바이프리스트레싱 기법을 이용한 철도교량의 동적안정성)

  • Choi, Sanghyun;Lee, Changsoo;Lim, Jaehoon;Lee, Seungjoon;Yang, Sungdon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.188-194
    • /
    • 2013
  • As the high speed railroad line increases, researches on developing a more economic high speed railroad bridge system have been actively conducted. In this paper, a new type of prestressed concrete girder based on the bi-prestressing technique, which can introduce additional prestress, is presented. The additional prestress can be introduced using a wedge-shaped pin bar into the upper part of the girder section. The applicability of the new girder technique to the high speed railroad bridge is verified via the dynamic stability analysis. Dynamic moving load analyses using the KTX train load are conducted on bridge systems with the span lengths of 30m, 35m, and 40m, respectively. The results of the analysis show that all bridge systems satisfy the limits prescribed in the design specifications to ensure structural stability, driving safety, and ride quality.

Development and Experimental Performance Evaluation of Steel Composite Girder by Turn Over Process (단면회전방법을 적용한 강합성 소수주거더 개발 및 실험적 성능 평가)

  • Kim, Sung Jae;Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.407-415
    • /
    • 2010
  • In Korea, more than 90% of the total number of steel bridges built for 40~70 m span length is a steel box-girder bridge type. A steel box-girder bridge is suitable for long span or curved bridges with outstanding flexural and torsional rigidity as well as good constructability and safety. However, a steel box-girder bridge is uneconomical, requiring many secondary members and workmanship such as stiffeners and ribs requiring welding attachments to flanges or webs. Therefore, in US and Japan, a plate girder bridge, which is relatively cheap and easy to construct is generally used. One type of the plate girder bridge is the two- or three-main girder plate bridge, which is a composite plate girder bridge that minimizes the number of required main girders by increasing the distance between the adjacent girders. Also, for the simplification of girder section, the stiffener which requires attachment to the web is not required. The two-main steel girder plate bridge is a representative type of plate girder bridges, which is suitable for bridges with 10 m effective width and has been developed in the early 1960s in France. To ensure greater safety of two- or three-main girder plate bridges, a larger steel section is used in the bridge domestically than in Europe or Japan. Also, the total number of two- or three-main girder plate bridge constructed in Korea is significantly less than the steel box girder bridge due to a lack of designers' familiarity with more complex design detailing of the bridge compare to that of a steel box girder bridge design. In this study, a new construction method called Turn Over method is proposed to minimize the steel section size used in a two- or three-main girder plate bridge by applying prestressing force to the member using confining concrete section's weight to reduce construction cost. Also, a full scale 20 m Turn Over girder specimen and a Turn Over girder bridge specimen were tested to evaluate constructability and structural safety of the members constructed using Turn Over process.

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.

Dynamic Performance Evaluation of New Type PSC Railroad Bridges (신형식 PSC 철도교량의 동적성능 평가)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.259-265
    • /
    • 2011
  • After the commercial opening of the KTX in 2005, the high speed railroad has been rapidly emerged as the major transportation means due to its high energy efficiency. Recently, the government has announced its plan to build the future transportation system around the high speed railroad. Based on this policy, the existing lines as well as the lines under construction or design are planning to increase design speed. In this paper, the suitability of the mid-span PSC girder bridges for the high speed railroad is evaluated via dynamic analysis. IT, Precom, and WPC girder bridges are considered for the purpose of this study and, for comparison, the identical modeling method and the analysis technique are utilized. The performance indices used for dynamic performance evaluation are the natural frequency, the vertical displacement, the end axial displacement, track irregularity, etc. The KTX train is utilized as a dynamic load, and the dynamic analysis is performed up to the train speed of 420km/hr with the increment of 10km/hr.

Fatigue performance of a new type PSC girder (신형식 PSC거더의 피로 성능)

  • Choi, Sang-Hyun;Lee, Chang-Soo;Kim, Tae-Kyun;Eui, Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.965-972
    • /
    • 2011
  • Unlike metallic materials, the importance of fatigue performance of concrete has been ignored. However, it is reported that environmental effects, if it cause deterioration, may increase the risk of fatigue failure under repeated loadings. In case of railroad bridges, the risk may increase due to highly periodic, repetitive, heavier nature of train load, which runs through the fixed passage called the track. Especially, when new material or structure is implemented for a main bridge member, experimental validation should be performed to avoid damage or failure due to unexpected behavior. In this paper, the fatigue performance of an IT girder is examined via a repeated loading test. The IT girder is a new type of a prestressed concrete (PSC) girder with two prestressed H-beams in the top of the girder, which provide additional sectional capacity, and it can be applied to the span longer than 30m which is a typical limit for a usual PSC girder. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the cyclic load two million times. The fatigue performance of the girder is examined according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

  • PDF

A Study on Design Section of Composite Steel H-Beam Bridge Based on KRTA Design Specifications (도로교 설계기준을 적용한 초간편 H-형강 강합성 교량 설계단면 연구)

  • Park, Jong-Sup;Kim, Jae-Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1711-1717
    • /
    • 2008
  • This paper presents an investigation on behavior of a simplified composite I-beam bridge(SCIB) based on Korea Bridge Design Specifications(2005). Simple and continuous span SCIBs are considered to determine the design cross section. A structural analysis program, MIDAS(2006), is used to obtain the stress and deflection of the SCIB. In order to evaluate the safety of the design cross section, three-dimensional analysis is performed using ABAQUS(2007). According to the verification results from stresses and deflections of the design section, the new composite bridge are safely used for developments of reasonable and economic SCIB.