• Title/Summary/Keyword: 신뢰도 기반 설계

Search Result 1,316, Processing Time 0.029 seconds

Estimation of Allowable Bearing Capacity and Settlement of Deep Cement Mixing Method for Reinforcing the Greenhouse Foundation on Reclaimed Land (간척지 온실기초 보강을 위한 심층혼합처리공법의 허용지내력 및 침하량 산정)

  • Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.

A Study on Status of Landscape Architecture Industry with National Statistics (국가통계자료를 활용한 조경산업 현황 연구)

  • Choi, Ja-Ho;Yoon, Young-Kwan;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.40-53
    • /
    • 2022
  • This study carried out to provide the methodology and basic status material of using Korean national statistics needed to find the actual state of the landscape architecture industry. The landscape architecture industry was classified into 'Design', 'Construction Management', 'construction', 'Maintenance & Management', 'Materials', 'Research', 'Education', and 'Administration' areas. In each field, business types were systemized and associated in accordance with Korean standard industrial classification and legislations pertinent to construction. Among them, the business types directly defined in the construction related legislations under the Ministry of Land, Infrastructure and Transport were focused on, and the establishment, association, integration, distribution, duplication, and omission of national statistics were analyzed. As a result, the business types of statistical analysis were selected. In order for commonality of statistical items and minimized error of interpretation, semantic analysis was conducted. Finally, the number of registered business types, the number of workers, and sales were selected. Based on them, the analysis framework applicable to fundamental analysis and evaluation of the actual state of the industry was proposed. Actual national statical data were applied for analysis and evaluation. In 2019, the number of registered business types related to the landscape architecture industry was 12,160, the number of workers by business type was 106,296, and the sales by business type were 8,308.5 billion KRW. The number of registered business types and the number of workers had been on the rise from 2017, whereas the sales had been on the decrease. It is required to come up with a plan for industrial development. This study was conducted with the national statistics established by multiple public institutions, so that there are limitations in securing consistency and reliability. Therefore, it is necessary to establish systematic and consistent national statistics in accordance with 「Landscaping Promotion Act」. In the future, it will planned to research application and development plans of national statistics according to subjects including park and green.

A Study on the Revitalization of the Competency Assessment System in the Public Sector : Compare with Private Sector Operations (공공부문 역량평가제도의 활성화 방안에 대한 연구 : 민간부분의 운영방식과의 비교 연구)

  • Kwon, Yong-man;Jeong, Jang-ho
    • Journal of Venture Innovation
    • /
    • v.4 no.1
    • /
    • pp.51-65
    • /
    • 2021
  • The HR policy in the public sector was closed and operated mainly on written tests, but in 2006, a new evaluation, promotion and education system based on competence was introduced in the promotion and selection system of civil servants. In particular, the seniority-oriented promotion system was evaluated based on competence by operating an Assessment Center related to promotion. Competency evaluation is known to be the most reliable and valid evaluation method among the evaluation methods used to date and is also known to have high predictive feasibility for performance. In 2001, 19 government standard competency models were designed. In 2006, the competency assessment was implemented with the implementation of the high-ranking civil service team system. In the public sector, the purpose of the competency evaluation is mainly to select third-grade civil servants, assign fourth-grade civil servants, and promotion fifth-grade civil servants. However, competency assessments in the public sector differ in terms of competency assessment objectives, assessment processes and competency assessment programmes compared to those in the private sector. For the purposes of competency assessment, the public sector is for the promotion of candidates, and the private sector focuses on career development and fostering. Therefore, it is not continuously developing capabilities than the private sector and is not used to enhance performance in performing its duties. In relation to evaluation items, the public sector generally operates a system that passes capacity assessment at 2.5 out of 5 for 6 competencies, lacks feedback on what competencies are lacking, and the private sector uses each individual's competency score. Regarding the selection and operation of evaluators, the public sector focuses on fairness in evaluation, and the private sector focuses on usability, which is inconsistent with the aspect of developing capabilities and utilizing human resources in the right place. Therefore, the public sector should also improve measures to identify outstanding people and motivate them through capacity evaluation and change the operation of the capacity evaluation system so that they can grow into better managers through accurate reports and individual feedback

The Impact of Entrepreneurship Education on Entrepreneurial Intentions and Entrepreneurial Behavior of Continuing Education Enrolled Students in University: Focusing on the Mediating Effect of Self-efficacy (창업교육이 성인학습자의 창업의지와 창업행동에 미치는 영향: 자기효능감 매개효과를 중심으로)

  • Yu, So Young;Yang, Young Seok;Kim, Myung Seuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.107-124
    • /
    • 2023
  • As getting in 4th Industrial Revolution Times, Continuing Education Enrolled Students(CEES) trying to find loophole for jepordized current life and need job transfer have surged their interest significantly on starting new business to bring up their post career after retirement through self-improvement. Government and university have actively initiated diverse policies of promoting startup for CEES in kicking off entrepreneurship courses and programs. However, relevant main policy, 'The 2nd University Startup Education Five-Year Plan (draft)' have too chiefly focused on theoretical start-up education rather than practical courses, causing the problem of inappropriate support for implementing real startup and business (Ministry of Education, 2018). This study is brought to empirically investigate the effect of self-efficacy as perspective of the impact of entrepreneurship education on entrepreneurial intention and behavior to come up with problem of poor entrepreneurial environment and entrepreneurship education to CEES. As to empirical research, this paper deliver on-line survey to CEES from September to October 2022, collect 207 effective feedbacks, In order to verify the reliability of the scale, the Cronbach's Alpha Coefficient (Cronbach's α) was calculated, analyzed, and measured. For hypothesis test, this paper utilize the multiple regression analysis statistical analysis method and use the SPSS 22.0 statistical processing program. Empirical results show, first, it was found that self-efficacy had a significant effect on start-up education. Second, start-up education had a significant effect on the intention to start a business of adult learners. Third, start-up education had a significant effect on the start-up behavior of adult learners. Fourth, self-efficacy had a significant effect on the intention of adult learners to start a business. Fifth, self-efficacy had a significant effect on the start-up behavior of adult learners. Sixth, self-efficacy had a mediating effect in the relationship between entrepreneurship education and adult learners' intention to start a business. Seventh, self-efficacy had a complete mediating effect in the relationship between start-up education and adult learners' start-up behavior. This paper is brought three significant implications. First, main consideration developing entrepreneurship education tools for CEES need to falls on defining potential needs of CEES as segmenting as to coming up with diversity of CEES's characteristics such as gender, age, experience, education, and occupation. Second, as to design specific entrepreneurship education program, both practical training program of utilizing CEES's career field experience benchmarking best practice startup and venture cases from domestic and global, and professional startup program of CEES initiating directly startup from ideation to develop business plan with pitching and discussing. Third, entrepreneurship education for CEES should be designed to incubate self-efficacy to enhance entrepreneurial intention of implementing entrepreneurial behavior as a real, eventually leading solid support system of self-improvement for CEES' Retirement life planning.

  • PDF

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.