• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.043 seconds

Fault Diagnosis using Neural Network by Tabu Search Learning Algorithm (Tabu 탐색학습알고리즘에 의한 신경회로망을 이용한 결함진단)

  • 양보석;신광재;최원호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.280-283
    • /
    • 1995
  • 계층형 신경회로망은 학습능력이나 비선형사상능력을 가지고 있고, 그 특징을 이용하여 패턴인식이나 동정 및 제어 등에의 적용이 시도되어 성과를 올리고 있다. 현재, 그 학습법으로 널리 이용되고 있는 것이 역전파학습법으로 최급 강하법이나 공액경사법 등의 최적화 방법이 적용되고 있지만, 학습에 많은 시간이 걸리는 점, 국소적 최적해(local minima)에 해의 수렴이 이루어져 오차가 충분히 작게 되지 않는 점 등이 문제점으로 지적되고 있다. 본 논문에서는 Hu에 의해 고안된 random 탐색법과 조합된 random tabu 탐색법으로 최적결합계수를 구하는 학습알고리즘으로, 국소적 최적해에 수렴하는 것을 방지하고, 수렴정도를 개선하는 새로운 방법을 이용하여 회전기계의 이상진동진단에 적용가능성을 검토하고 오차역전파법에 의한 진단결과와 비교검토한다.

  • PDF

Neural Network Based PID Control for Pneumatic NC Axes (공압 NC축의 신경회로망 결합형 PID 제어)

  • Park, Lae-Seo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

Learning Control of Inverted Pendulum Using Neural Networks. (신경회로망을 이용한 도립진자의 학습제어)

  • Lee, Jae-Kang;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.201-206
    • /
    • 2000
  • A priori information of object is needed to control in some well known control methods. But we can't always know a priori information of object in real world. In this paper, the inverted pendulum is simulated as a control task with the goal of learning to balance the pendulum with no a priori information using neural network controller. In contrast to other applications of neural networks to the inverted pendulum task, the performance feedback is unavailable on each training step, appearing only as a failure signal when the pendulum falls or reaches the bound of track. To solve this task, the delayed performance evaluation and the learning of nonlinear of nonlinear functions must be dealt. Reinforcement learning method is used for those issues.

  • PDF

Nonlinear System Modeling Using a Neural Networks (비선형 시스템의 신경회로망을 이용한 모델링 기법)

  • Chong, Kil To;No, Tae-Soo;Hong, Dong-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.22-29
    • /
    • 1996
  • In this paper the nodes of the multilayer hidden layers have been modified for modeling the nonlinear systems. The structure of nodes in the hidden layers is built with the feedforward, the cross talk and the recurrent connections. The feedforward links are mapping the nonlinear function and the cross talks and the recurent links memorize the dynamics of the system. The cross talks are connected between the modes in the same hidden layers and the recurrent connection has self feedback, and these two connections receive one time delayed input signals. The simplified steam boiler and the analytic multi input multi output nonlinear system which contains process noise have been modeled using this neural networks.

  • PDF

The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System (혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식)

  • Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1779-1785
    • /
    • 2006
  • This paper presents a method of virtual robot arm control by EMG pattern recognition using the proposed hybrid system. The proposed hybrid system is composed of the LVQ and the SOFM, and the SOFM is used for the preprocessing of the LVQ. The SOFM converts the high dimensional EMG signals to 2-dimensional data. The EMG measurement system uses three surface electrodes to acquire the EMG signal from operator. Six hand gestures can be classified sufficiently by the proposed hybrid system. Experimental results are presented that show the effectiveness of the virtual robot arm control by the proposed hybrid system based classifier for the recognition of hand gestures from EMG signal patterns.

A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm (유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구)

  • Kim, Hong-Bok;Kim, Jeong-Keun;Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • This paper deals with a nonlinear system modelling using neural network and genetic algorithm Application q{ neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. in this paper, we optimize a neural network structure using genetic algorithm The genetic algorithm uses binary coding for neural network structure and searches for an optimal neural network structure of minimum error and fast response time. Through an extensive simulation, the optimal neural network structure is shown to be effective for identification of nonlinear system.

The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어)

  • 정경규;김종수;이우송;이명재;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.561-566
    • /
    • 2002
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어)

  • 정경규;정동연;이우송;김경년;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.146-151
    • /
    • 2001
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF