• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.031 seconds

인공신경회로망을 이용한 계통 주중 전력수요예측 (Weekdays Load forecasting of Domestic Power System Using Artificial Neural Network)

  • 전승욱;박우재;박정욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.610-611
    • /
    • 2011
  • 전력 계통의 운용 계획을 최적화하기 위해서 연간 최대전력수요와 시간별 전력수요에 대한 장단기간의 수요 예측에 관한 연구가 활발하게 진행 중이다. 특히, 단기 수요 예측은 발전비용과 신뢰도에 크게 영향을 주며, 전력계통의 제어 및 단기계획, 경제급전, 전력조류계산 등의 입력 자료로 활용된다. 많은 예측 문제에 폭넓게 사용되고 있는 인공신경회로망은 전력수요 예측에도 자주 쓰이는 기법이다. 본 논문에서는 이를 보다 정확히 하기 위해 기존의 인공신경회로망 기법을 개선하여 보다 정확한 예측을 보였다.

  • PDF

고속철도의 실내소음저감을 위한 신경회로망 기반 능동소음제어 알고리즘 (A Neural Network based Active Noise Control for Reducing Interior Noise of High-Speed Trains)

  • 조현철;여대연;이권순;남현도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2029_2030
    • /
    • 2009
  • 고속철도의 실내소음은 승객들의 질적 서비스와 매우 연관이 깊은 시스템 환경요소라 할 수 있다. 본 논문은 이러한 소음을 저감하기 위한 지능형 알고리즘을 이용한 능동소음제어(ANC; active noise control) 시스템을 제안한다. 우선 철도실내의 소음저감시스템에 대한 기구학적 모델링을 구한 후 철도시스템에 적합한 ANC 기법을 제안한다. 본 논문은 지능형 ANC를 구현하기 위하여 다층 퍼셉트론의 신경회로망 모델을 이용하였으며 실시간으로 소음저감을 위하여 온라인 학습알고리즘을 적용한다. 제안한 ANC 기법의 성능을 검증하기 위하여 시뮬레이션을 실시하였으며 고속 Fourier 변환(FFT) 분석을 통해 소음의 저감정도를 분석한다.

  • PDF

일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구 (A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

비선형 시스템 제어를 위한 모듈화 피지추론 시스템 (Modular Fuzzy Inference Systems for Nonlinear System Control)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.395-399
    • /
    • 2001
  • 이 논문은 학습을 통해 관측 데이터로부터 퍼지 추론 모듈을 생성할 수 있는 적응 능력을 갖는 모듈화 퍼지추론 시스템을 제안한다. 제안한 시스템은 TS 퍼지모델과 모듈화 신경회로망의 구조적 유사성을 기초로 한다. 학습과정은 새로운 퍼지추론 모듈의 생성과 모듈 파라미터의 갱신으로 구성된다. 퍼지추론 모듈은 국부모델망과 퍼지 게이팅망으로 구성된다. 제안한 시스템의 파라미터들은 표준 LMS 알고리즘을 이용하여 최적화된다. 제안한 시스템의 성능은 비선형 동적 시스템 적응제어에의 응용을 통해서 입증된다.

  • PDF

신경회로망을 이용한 직접 구동형 로봇의 위치제어에 관한 연구 (A Study on Position Control of the Direct Drive Robot Using Neural Networks)

  • 신춘식;황용연;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.284-292
    • /
    • 1997
  • This paper is concerned with position control of direct drive robots. The proposed algorithm consists of the feedback controller and neural networks. Mter the completion of learning, the output of the feedback controller is nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum retuning of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the con¬trolled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the position control of a parallelogram link-type direct drive robot.

  • PDF

동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어 (Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron)

  • 김용태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

신경회로망을 이용한 로봇 매니퓰레이터의 힘 제어에 관한 연구 (A Study on the Force Control of a Robot Manipulator Using Neural Networks)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.404-413
    • /
    • 1997
  • Direct-drive robots are suitable to position and force control with high accuracy, but it is difficult to design a controller which gives satisfactory perfonnance because of the system's nonlinearity and link-interactions. This paper is concerned with the force control of direct-drive robots. The pro¬posed algorithm consists of feedback controllers and a neural network. Mter the completion of learning, the outputs of feedback controllers are nearly equal to zero, and the neural network con¬troller plays an important role in the control system. Therefore, the optimum adjustment of parameters of feedback controllers is unnecessary. In other words, the proposed algorithm does not need any knowledge of the controlled system in advance. The effectiveness of the proposed algo¬rithm is demonstrated by the experiment on the force control of a parallelogram link-type direct¬drive robot.

  • PDF

신경회로망을 이용한 공압서보 XY-플로터의 운동제어 (Motion Control of a Pneumatic Servo XY-Plotter using Neural Network)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.603-609
    • /
    • 2004
  • This paper deals with the issue of Neural Network-based control for a rodless pneumatic cylinder system which is utilized for a pneumatic XY-plotter. In order to identify the system design parameters, the open loop response of a pneumatic rodless cylinder controlled by a pneumatic servovalve is investigated by applying a self-excited oscillation method. Based on the system design parameters, the PD feedback compensator is designed and then Neural Network is incorporated with it. The experiment of a trajectory tracking control using a PD-NN has been performed and proved its excellent performance by comparing with that of a PD feedback compensator.

신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가 (Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft)

  • 이기영;김병수
    • 한국항공운항학회지
    • /
    • 제21권3호
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

신경 회로망을 이용한 자동차 번호판 인식 시스템의 설계 및 구현 (Design and Implementation of Recognition Vehicre Tag Using Neural Network System)

  • 이호현;최용호;조범준
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.352-360
    • /
    • 2002
  • 본 논문에서는 미세 거리변와에 따른 자기자화의 변화를 구현하는데 있어 비선형적인 요소를 포함하고 있어 이를 수학적으로 모델링하여 제어기를 설계하는데는 많은 난점을 내포하고 있다. 따라서 거리변화에 따른 자기장의 비선형적인 변화 관계를 신경회로망 제어기의 학습을 통하여 제어할 수 있도록 신경 회로망 제어기를 제안하려 한다.

  • PDF