Journal of the Korean Institute of Intelligent Systems
/
v.13
no.2
/
pp.163-168
/
2003
Several equipments for flame detection are employed in the power generations. But these flame detectors have some problems for the correct performance. So in this paper, we apply different techniques for the flame detection. Image processing techniques are broadly applied in industrial fields. In this paper, the image information is recorded by a camcoder and then these images are preprocessed for the input values of neural network model. We can test and evaluate the approach that uses image information for the flame detection of burners. If this technique is implemented in physical plant, the economical and effective operation could be achieved.
In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.
There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).
This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.
This paper proposes a model which classifies the type of guns and information about sound source location using deep neural network. The proposed classification model is composed of convolutional neural networks (CNN) and long short-term memory (LSTM). For training and test the model, we use the Gunshot Audio Forensic Dataset generated by the project supported by the National Institute of Justice (NIJ). The acoustic signals are transformed to Mel-Spectrogram and they are provided as learning and test data for the proposed model. The model is compared with the control model consisting of convolutional neural networks only. The proposed model shows high accuracy more than 90 %.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.277-279
/
2006
본 논문에서는 스크래치 텍스처 및 형태특성을 이용하여 모든 종류의 스크래치를 자동으로 검출 할 수 있는 방법을 제안한다. 제안한 방법은 텍스처 분류 단계와 형태 필터링 단계를 구성된다. 텍스처 분류단계에서는 스크래치의 텍스처 정보를 이용하여 입력영상의 각 화소를 스크래치와 비스크래래치 영역으로 분류한다. 이때 분류기로 신경망을 사용한다. 형태필터링단계에서는 스크래치의 형태정보에 기반하여 설계된 원소구조를 사용하는 모폴로지 필터를 사용하여 잘못 분류된 스크래치 영역을 제거한다. 제안된 방법의 평가를 위해 다양한 종류의 스크래치를 가진 영화 및 애니메이션 데이터에 대해 실험이 이루어 졌고, 그 결과 제안된 방법의 강건함과 효율성이 입증되었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.103-108
/
2019
한국어 질의 응답의 입력 질문에 대한 예상 정답 유형을 단답형 또는 서술형으로 이진 분류하는 방법에 대해 서술한다. 일반적인 개체명 인식으로 확인할 수 없는 질의 주제어의 화제성을 반영하기 위하여, 검색 엔진 쿼리를 빈도수로 분석한다. 분석된 질의 주제어 정보와 함께, 정답의 범위를 제약할 수 있는 속성 표현과 육하원칙 정보를 입력 자질로 사용한다. 기존 신경망 분류 모델과 비교한 실험에서, 추가 자질을 적용한 모델이 4% 정도 향상된 분류 성능을 보이는 것을 확인할 수 있었다.
Kim, Kun-Ho;Kim, Byung-Whan;Kim, Kyung-Nam;Hong, Jin-Han
Proceedings of the KIEE Conference
/
2003.07d
/
pp.2552-2554
/
2003
난수발생기 (Random generator-RG)와 GRNN을 이용한 분류기 설계방식을 제안하며, 이를 프로모터 염기서열의 분류에 적용한다. 주어진 난수범위에서 다중 분류기를 발생하였으며, 그 성능을 예측정확도와 분류민감도 측면에서 평가하였고, 분류민감도는 다시 전체와 개별적 프로모터에 대해서 세분화하여 평가하였다. 최적화된 분류기 상호간의 비교에서 제안된 기법은 모든 임계점에 대해서, 전체 분류민감도와 전체 예측정확도를 향상시키었으며, 이는 전체 분류 민감도에서 더 두드러졌다. 한편, 개별적 프로모터에 대한 분류민감도와 예측정확도도 평균적으로 향상되었다. 이 같은 결과로 제안된 기법이 분류와 예측성능을 동시에 증진하는데 매우 효과적임을 알 수 있었다.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.3
/
pp.319-327
/
2012
In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.
We present a preprocessing method for an underwater target detection model based on a convolutional neural network. The acoustic characteristics of the ship show ambiguous expression due to the strong signal power of the low frequency. To solve this problem, we combine feature preprocessing methods with various feature scaling methods and spectrogram methods. Define a simple convolutional neural network model and train it to measure preprocessing performance. Through experiment, we found that the combination of log Mel-spectrogram and standardization and robust scaling methods gave the best classification performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.