• Title/Summary/Keyword: 식별데이터

Search Result 1,602, Processing Time 0.027 seconds

Realtime Individual Identification based on EOG Algorithm for Customized Sleep Care Service (맞춤형 수면케어 서비스를 위한 EOG 기반의 실시간 개인식별 알고리즘)

  • Hong, Ki Hyeon;Lee, Byung Mun;Park, Yang Jae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.8-16
    • /
    • 2019
  • Customized sleep care service needs to be provided differently for individuals since individual has different degree of sleep disorder. Because the brainwave data shows unique waveform characteristics for each person, this characteristic can be used to identify individuals. Personal identification provides an important role in enabling customized services. When you blink, you can obtain brain wave characteristics by measuring the area of the frontal lobe. Therefore, a real-time personal identification algorithm based on blinking EOG for customized sleep care service is proposed in this paper. For evaluation, 10 individuals were tested for personal identification accuracy. The results of the experiment confirmed that a maximum accuracy of 93% were taken. Algorithms can be developed by reflecting characteristics such as changes in the external environment in the future.

Fintech Industry Invigoration by the De-identification and Linkage Reform of Personal Information (개인정보 비식별 조치와 결합 개선을 통한 핀테크 시장 활성화)

  • Oh, Won-Gyeom;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.340-343
    • /
    • 2016
  • The Korean government published the personal information de-identification guideline on June 2016, which were made by related government ministries. The guideline's objective is that the invigoration of Korean bigdata industry on personal information protection under the current laws. However, if there is some unreasonable method or process in the guideline, it can be an obstacle to bigdata analysis. This article will review the guideline to find defects in methods and processes of de-identification evaluation, de-identification support and data-linkage and then propose the best solutions to improve them. Lastly, this article will mention how these solutions can invigorate Fintech industry.

  • PDF

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.

Extraction of Author Identification Elements of Overseas Academic Papers on Authority Data System for Science and Technology (과학기술 전거데이터 시스템에서의 해외 학술논문 저자 식별요소 추출)

  • Choi, Hyunmi;Lee, Seokhyoung;Kim, Kwangyoung;Kim, Hwanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.711-713
    • /
    • 2013
  • Various human resource information of the world can be found according to spread of social network such as facebook and twitter. There are an amounts of researcher information on the science and technology area but it is difficult to find a suitable researcher for research or business such as research partner, because researcher information is not systematically arranged. To solver this problem, we are constructing authority data system for science and technology based on authority information of overseas academic papers. In this paper, in order to construct the authority data, we extracts author identification elements from millions of overseas academic papers, which are published from 1994 to 2012. There are more than 50 author identification elements such as author name, affiliation, paper title, publisher, year, keywords, co-author, co-author's affiliation in Korean, English, Chinese, and Japanese. We construct the element database by extracting and storing an author identification information based on the elements from overseas academic papers. Future works includes that the authority database for overseas academic papers is constructed by storing an academic activities of researchers after author clustering with these extracted elements. The authority data is used to improve the researcher information utilization and activate community to find a suitable research partner or a business examiner.

  • PDF

A Study on the Identification Method of Security Threat Information Using AI Based Named Entity Recognition Technology (인공지능 기반 개체명 인식 기술을 활용한 보안 위협 정보 식별 방안 연구)

  • Taehyeon Kim;Joon-Hyung Lim;Taeeun Kim;Ieck-chae Euom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.577-586
    • /
    • 2024
  • As new technologies are developed, new security threats such as the emergence of AI technologies that create ransomware are also increasing. New security equipment such as XDR has been developed to cope with these security threats, but when using various security equipment together rather than a single security equipment environment, there is a difficulty in creating numerous regular expressions for identifying and classifying essential data. To solve this problem, this paper proposes a method of identifying essential information for identifying threat information by introducing artificial intelligence-based entity name recognition technology in various security equipment usage environments. After analyzing the security equipment log data to select essential information, the storage format of information and the tag list for utilizing artificial intelligence were defined, and the method of identifying and extracting essential data is proposed through entity name recognition technology using artificial intelligence. As a result of various security equipment log data and 23 tag-based entity name recognition tests, the weight average of f1-score for each tag is 0.44 for Bi-LSTM-CRF and 0.99 for BERT-CRF. In the future, we plan to study the process of integrating the regular expression-based threat information identification and extraction method and artificial intelligence-based threat information and apply the process based on new data.

Feature Selection for Chinese Named Entity Recognition using SVM (SVM을 이용한 중국어 고유명사 식별에서의 자질 선택)

  • Jin, Feng;Na, Seung-Hoon;Kang, In-Su;Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.90-95
    • /
    • 2004
  • "고유명사 식별"은 사전에 등록되어 있지 않은 고유명사를 찾아내고 분류하는 과정으로 주로 인명, 지명, 조직 명을 처리 대상으로 한다. 처리할 데이터는 점점 많아지고 고유명사는 수시로 생겨나기 때문에 고유명사 식별은 정보검색, 질의응답, 기계번역시스템의 핵심 기술 중의 하나로 부각되었다. 고유명사 식별에 있어 정확률과 더불어 식별속도와 식별모듈의 크기가 시스템의 성능에 미치는 문제도 쟁점이 되고 있다. 본 논문에서는 SVM과 자질선택을 결합한 다양한 실험을 통하여 중국어 고유명사의 식별 효율을 높이는 방법을 연구하였다.

  • PDF

Background Music Identification in TV Broadcasting Program Algorithm using Audio Peak Detection (오디오 피크 검출을 적용한 TV 방송 프로그램 내 배경음악 식별 알고리즘)

  • Lee, Jung-Sung;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.34-35
    • /
    • 2013
  • 본 논문에서는 오디오 피크 검출을 적용한 TV 방송 프로그램내 배경음악 식별 알고리즘을 제안한다. 제안한 알고리즘은 음악 핑거프린트 추출 및 전송부, 음악구간 검출부, 음악 핑거프린트는 고속 매칭 및 정보전송부 세 부분으로 구성되어 있다. 음악 핑거프린트 추출 및 전송부에서는 음악 원음 오디오 데이터를 퓨리에 변환하여 스펙트럼 계수를 추출한다. 추출된 스펙트럼의 성분 중에서 일정한 문턱값 이상의 에너지를 가지는 값을 피크로 검출하고 검출된 피크를 이용하이 핑거프린트를 생성하고 데이터 베이스화한다. 음악구간 검출부에서는 입력된 방송 프로그램 오디오 데이터에 GMM(Gaussian Mixture Model)을 적용하여 음악과 음악 외 오디오 데이터를 분류한다. 음악 핑거프린트 고속 매칭 및 정보전송부에서는 음악구간이라고 인식된 쿼리 오디오 데이터를 음악 핑거프린트 추출 및 전송부와 동일한 과정을 통해 핑거프린트를 생성하고 데이터 베이스화된 음악 원음의 핑거프린트들과 비교하여 가장 유사한 음원의 정보를 TV의 화면에 자막으로 보여준다.

  • PDF

An Indexing Model for Effective Retrieval of Multimedia Data Based on XML (XML 기반 멀티 미디어 데이터의 효과적인 검색을 위한 색인 모델)

  • Ko, Eun-Kyung;Hwang, Bu-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.1895-1898
    • /
    • 2002
  • 웹 환경에서 처리하는 데이터의 종류가 텍스트에서 비디오, 오디오와 같은 멀티미디어 데이터까지 다양해지면서 데이터를 효율적으로 표현, 저장 및 검색하기 위한 다양한 방법이 연구되고 있다. 이 논문에서는 동영상 데이터의 구조적인 형태를 고려하여 XML 문서로 표현하고 XML 문서를 데이터베이스에 저장하기 위한 데이터베이스 스키마를 설계하였다. 그래서 XML 문서내의 각 노드에 엘리먼트의 고유성을 나타내기 위한 고유식별자와 부모노드와 자식노드들 간의 관계를 표현하여 주기 위한 엘리먼트 식별자와 ETID를 결합하여 멀티미디어 데이터에 대한 XML 문서의 부모와 자식의 관계를 표현하여 준다. 그리고 부모가 같은 형제간의 순서 정보와 형제들 간의 동일한 타입을 구별하고 정보를 표현하기 위한 관계 테이블을 설계하였다.

  • PDF

Improving A Text Independent Speaker Identification System By Frame Level Likelihood Normalization (프레임단위유사도정규화를 이용한 문맥독립화자식별시스템의 성능 향상)

  • 김민정;석수영;정현열;정호열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.487-490
    • /
    • 2001
  • 본 논문에서는 기존의 Caussian Mixture Model을 이용한 실시간문맥독립화자인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 나타내는 유사도정규화 ( Likelihood Normalization )방법을 화자식별시스템에 적용하여 시스템을 구현하였으며, 인식실험한 결과에 대해 보고한다. 시스템은 화자모델생성단과 화자식별단으로 구성하였으며, 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하여 화자모델을 작성하였으며. GMM의 파라미터를 최적화하기 위하여 MLE(Maximum Likelihood Estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum Likelihood)을 이용하여 프레임단위로 유사도를 계산하였다. 계산된 유사도는 유사도 정규화 과정을 거쳐 스코어( SC)로 표현하였으며, 가장 높은 스코어를 가지는 화자를 인식화자로 결정한다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며. 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을수 있었다.

  • PDF

Classification Type of Weapon Using Artificial Intelligence for Counter-battery RadarPaper Title (인공지능을 이용한 대포병탐지레이더의 탄종 식별)

  • Park, Sung-Jin;Jin, Hyung-Seuk
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.921-930
    • /
    • 2020
  • The Counter-battery radar estimates the origin and impact point of the artillery by tracking the trajectory of the shell. In addition, it has the ability of identifying the type of weapon. Depending on the position between the shell and the radar, the detected signals appear differently. This has ambiguity to distinguish the type of shells. This paper compares fuzzy logic and artificial intelligence, which classifies type of shell using the parameter of signal processing step. According to the research result, artificial intelligence can improve identification rate of type of shell. The data used in the experiment was obtained from a live fire detection test.