• Title/Summary/Keyword: 식물병원균

Search Result 662, Processing Time 0.027 seconds

Effects of Inoculum Density, Plant Age and Temperature on the Incidence of Crown Rot of Papper Caused by Phytophthora capsici (전염원(傳染源)의 농도(濃度), 고추의 모령(苗齡) 및 온도(溫度)가 고추역병(疫病) 발생(發生)에 미치는 영향(影響))

  • Kim, G.S.;Park, C.S.;Choi, J.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.117-121
    • /
    • 1985
  • Through the laboratory and vinyl house experiments, the effects of inoculum density, plant age and temperature on the incidence of Phytophthora crown rot of pepper (Capsicum annum L.) were investigated. The propagule survival was greater in the natural soil than in autoclaved soil within first 2 weeks when the sporangial suspension of the pathogenic fungus was incorporated into soil, thereafter the survivability reduced rapidly. The propagule was not detectable in 35 days by means of Papavizas selective medium neither in natural nor in autoclaved soil. At least 5 sporangia per gram soil were required to induce crown rot for 30 days old pepper seedlings. Further increase in inoculum concentration above this threshold level resulted in higher disease incidence and shorter incubation period. When the same amount of inoculum was infested, higher disease incidence was observed for younger plants until 3 weeks after inoculation. On the other hand after 4 weeks this tendency was not extended any more. Younger plants were recognized as having shorter incubation period upon infection, however, the days from first symptom appearance to complete death were not significantly different among differently aged seedlings. Exposure of inoculated pepper seedlings to $25^{\circ}C$ resulted in highest infection rates and followed by those to $30^{\circ}C\;and\;20^{\circ}C$ but no disease was found at $15^{\circ}C\;and\;35^{\circ}C$ for 10 days. When the plants previously incubated at different temperature for 10 days were moved to $25^{\circ}C$ room temperature, prior exposure to $20^{\circ}C\;and\;30^{\circ}C$ brought continuous disease development. Even those plants preincubated at $15^{\circ}C$ were diseased up to 50%. But the prior exposure to $35^{\circ}C$ induced no symptom developed, indicating no seedlings infected at all.

  • PDF

Evaluation of Disease Resistance of Rice Cultivar Developed in North Korea (북한에서 육성된 벼 품종의 병 저항성 검정)

  • Chung, Hyunjung;Kang, In Jeong;Yang, Jung-Wook;Roh, Jae-Hwan;Shim, Hyeong-Kwon;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.108-113
    • /
    • 2019
  • Almost 30% of arable lands of North Korea are covered with paddy rice. In rice cultivation of North Korea, rice blast disease is the most important fungal disease and bacterial leaf blight is the most important bacterial disease. Seven North Korean rice cultivars had been tested for the disease resistance against rice blast pathogen, Magnaporthe oryzae and bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae. The responses of seven cultivars against 17 different M. oryzae races from South Korea had been quite different. Among seven cultivars, Giljoo1ho was very resistant to all 18 different M. oryzae isolates from South Korea, nevertheless KI or KJ. Pyungdo5ho was very susceptible, it showed susceptible responses to 8 out of 10 KI races and 7 out of 8 KJ races of M. oryzae isolated in South Korea. However, the response to bacterial leaf blight was different from the response to rice blast pathogen. Gijoo1ho, Wonsan69ho, Onpo1ho, and Pyungdo15ho were susceptible to KXO42 (K1) and KXO90 (K2), respectively. Pyungdo5ho was resistant to KXO85 (K1) and KXO19 (K3), and Pyungyang21ho was resistant to K1 races. Based on these results, Giljoo1ho can be a good resource for the breeding of resistant rice cultivar against M. oryzae isolates from South Korea.

Sprouting Inhibition after CIPC Spraying on Early and Mid-season Potato Varieties during Storage in Semi-underground Warehouse at Room Temperature in Summer (CIPC 처리한 조·중생종 감자의 반지하 저장고를 이용한 하계 실온저장 중 맹아 억제 효과 비교)

  • Kyusuk Han;Byung-Sup Kim;Sae Jin Hong;Young Hun Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.172-180
    • /
    • 2023
  • This study was carried out to determine the sprouting period of early and mid-season varieties, which includes 'Atlantic', 'Chubaek', and 'Superior', during the summer storage period in a semi-underground warehouse without cooling system. And also it was investigated the effect of chlorpropham [Propan-2-yl N-(3-chlorophenyl)carbamate, CIPC] treatment on the sprouting inhibition for the varieties. This study was conducted to figure out a sprout inhibitory effect when CIPC was applied to 1kg of the potato tubers at concentrations of 10 mg and 20 mg which are lower than the treatment concentrations of ca 30 mg prescribed by the positive list system (PLS). The internal temperature of the warehouse used in this experiment was lowered by 5℃ or more than the outside temperature. The difference between the lowest and highest temperature during the experiment throughout the day was 5℃. It showed the effect of reducing to 1/2 of the difference in outdoor temperature. As for the sprouting of potatoes, the extremely early variety 'Chubaek' sprouts appeared at the 6th week of storage of control and it was the fastest sprouting potato among the control groups of the varieties. Sprouting began to appear in the Superior at the 6th week of storage, while the 'Atlantic' sprouted at the 8th week of storage. The appearance of sprouts was suppressed in all treatment groups of 'Atlantic' and 'Superior' varieties in CIPC treatments. Sprouts were observed in all treatment groups of 'Chubaek' after the 7th week, but the elongations of the sprouts in tubers were completely inhibited until the 8th week of storage. 'Atlantic' and 'Superior' seemed to have a sprouting inhibitory effect even with a low CIPC concentration of 10 mg·kg-1, with the exception of extremely early variety 'Chubaek' that breaks out of the dormancy quickly. Although weight loss occurred continuously during storage, it was minor loss of 0.7-1.6%. There was no consistent trend for changes of the loss in the varieties and CIPC treatments. Most common pathological disorder was the dry rot during the experiment, but only few were affected. The use of the tubers treated at 18℃ and 90% RH for 10 days and the rack of refrigeration system which lead to lack of convection seemed to have suppressed the spread of pathogens.

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW (Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제)

  • Kim, Yong-Ki;Choi, Eun-Jung;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;Jang, Bo-Kyung;Yun, Jong-Cheul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.

Isolation and Characterization of Defense Genes Mediated by a Pathogen-Responsive MAPK Cascade in Tobacco (담배에서 병원균에 반응하는 MAPK 신호전달체계에 의해 매개되는 방어 유전자들의 분리 및 특성화)

  • Jang, Eun-Kyoung;Kang, Eun-Young;Kim, Young-Cheol;Cho, Baik-Ho;Yang, Kwang-Yeol
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1023-1030
    • /
    • 2008
  • NtMEK2, which is the tobacco MAPK kinase that is upstream of SIPK and WIPK, was identified using the dexamethasone (DEX)-inducible gain-of-function transgenic system. Expression of $NtNEK2^{DD}$, a constitutively active mutant of NtNEK2, leads to HR-like cell death, which indicates that the NtMEK2-SIPK/WIPK cascade controls defense responses in tobacco. However, little is known about the downstream target substrates or defense-related genes that are regulated by the NtMEK2-SIPK/ WIPK cascade. In this study, ACP-based differential display RT-PCR was used to isolate the downstream effectors mediated by the NtMEK2-SIPK/WIPK cascade in $NtNEK2^{DD}$ transgenic plants. The results identified 6 novel differentially expressed genes (DEGs). These included pathogen induced protein 2-4 (pI2-4), monoterpene synthase 2 (MTS2), seven in absentia protein (SINA), cell death marker protein 1 (CDM1), hydroxyproline-rich glycoprotein (HRGP) and unknown genes (DEG45). The induction of these genes was confirmed by RT-PCR of samples obtained from $NtNEK2^{DD}$ plants. Additionally, when compared with other isolated DEGs, the pI2-4, CDM1 and HRGP genes were significantly up-regulated in response to treatment with salicylic acid and tobacco mosaic virus. Taken together, these results suggest that three novel DEGs were regulated by the NtMEK2-SIPK/WIPK cascade involved in disease resistance in tobacco.

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

Effect of Silicate-Coated Rice Seed on Healthy Seedling Development and Bakanae Disease Reduction when Raising Rice in Seed Boxes (벼 상자육묘에서 규산코팅볍씨의 건묘육성과 벼키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Jung;Roh, Jae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • We investigated the effect of silicate coating of rice seeds on bakanae disease incidence and the quality of seedlings raised in seedling boxes and transplanted into pots. The silicate-coated rice seed (SCS) was prepared as follows. Naturally infested rice seeds not previously subjected to any fungicidal treatment were dressed with a mixture of 25% silicic acid at pH 11 and 300-mesh zeolite powder at a ratio of 50 g dry seed - 9 mL silicic acid - 25 g zeolite powder. The following nursery conditions were provided : Early sowing, dense seeding in a glass house with mulching overnight and no artificial heating, which were the ideal conditions for determining the effect on the seed. The nursery plants were evaluated for Gibberella. fujikuroi infection or to determine the recovery to normal growth of infected nursery plants in the Wagner pot. Seedlings emerged 2-3 days earlier for the SCS than they did for the non-SCS control, while damping-off and bakanae disease incidence were remarkably reduced. Specifically, bakanae disease incidence in the SCS was limited to only 7.8% for 80 days after sowing, as compared to 91.6% of the non-SCS control. For the 45-days-old SCS nursery seedlings, the fresh weight was increased by 11% and was two times heavier, with only mild damage compared to that observed for non-SCS. Even after transplanting, SCS treatment contributed to a lower incidence of further infections and possibly to recovery of the seedlings to normal growth as compared to that observed in symptomatic plants in the pot. The active pathogenic macro-conidia and micro-conidia were considerably lower in the soil, root, and seedling sheath base of the SCS. In particular, the underdeveloped macro-conidia with straight oblong shape without intact septum were isolated in the SCS ; this phenotype is likely to be at a comparative etiological disadvantage when compared to that of typical active macro-conidia, which are slightly sickle-shaped with 3-7 intact septa. A active intact conidia with high inoculum potential were rarely observed in the tissue of the seedlings treated only in the SCS. We propose that promising result was likely achieved via inhibition of the development of intact pathogenic conidia, in concert with the aerobic, acidic conditions induced by the physiochemical characteristics associated with the air porosity of zeolite, alkalinity of silicate and the seed husk as a carbon source. In addition, the resistance of the healthy plants to pathogenic conidia was also important factor.

Effect of Yacon (Smallanthus sonchifolius H. Robinson) Extracts on Herbicidal, Fungicidal, and Insecticidal Activities (야콘(Smallanthus sonchifolius H. Robinson) 추출물의 제초, 살균 및 살충활성 효과)

  • Yun, Young-Beom;Kim, Jin-Hwa;Jang, Se-Ji;Kim, Do-Ik;Kwon, Oh-Do;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • This research has been carried out to find out the highest effect on insecticidal, fungicidal and herbicidal activities in leaves, stem and tuber extracts of yacon (Smallanthus sonchifolius) and extraction methods such as water, boiling water and methanol. Characteristics of potential herbicidal components among extraction methods were investigated by solvent fractions such as hexane, chloroform, ethyl acetate, butanol, and water. Generally, methanol extract was the best on inhibition of germination rate, plant height, and root length in cucumber and barley. On the other hand, the inhibition effect on growth in cucumber and barley was the best in tuber among plant parts of yacon. Inhibition of germination rate, plant height, and root length in cucumber and barley in solvent fractions was the best in water fraction, but there were no differences in other fractions. Digitaria sanguinalis L. and Solanum nigrum L. by 5 and 10% extractions of yacon tuber were controlled by more than 70~80% and 95~100%, respectively. However, there was no inhibition effect on foliar treatment in cucumber and barley as affected by 5 and 10% extractions of yacon tuber. Mortality of green peach aphid (Myzus persicae Sulzer) was 50% at 3 days after treatment of 5% extracts of yacon leaves. Mortality of brown plant hopper (Nilaparvata lugens Stal) was only 24% in 5% extracts of stems and leaves with midrib, but was 57% in 5% extracts of leaves without midrib. There was no fungicidal effect on anthracnose (Colletotrichum truncatum), wilt disease (Fusarium oxysporum), verticillium wilt (Verticillium dahliae), bacterial blight (Xanthomonus oryzae) in 5% extracts of yacon leaves.

Antibacterial Effect of Hiscus cannabinus L. Methanol Extract against Pathogenic Bacteria in Domestic Animals (Kenaf methanol 추출물의 가축 주요 병원성 균에 대한 항균효과)

  • Lim, Jeong-Ju;Kim, Dong-Hyeok;Lee, Jin-Ju;Kim, Dae-Geun;Lee, Hu-Jang;Min, Won-Gi;Park, Dong-Jin;Huh, Moo-Ryong;Chang, Hong-Hee;Rhee, Man-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Hibiscus cannabinus L. is a plant in the Malvaceae family, that was seeded at June 1st in 2010 and harvested at November 18th. The present study was designated to investigate the safety for host cells, antibacterial effects of Hibiscus cannabinus L. of flower (HCME-F) or leaf (HMEF-L) methanol extract for typical Gram's positive bacteria (St. aureus and Str. epidermidis) or Gram's negative bacteria (S. typhimurium and E. coli). In treatment of different concentrations of HCME-F or HMEF-L (1, 50 and $100{\mu}g/ml$), cytotoxic effects were not shown to RAW 264.7 cells until 24 h incubation. In determination of antibacterial activity of HCME-F or HMEF-L, the antibacterial activities for St. aureus and Str. epidermidis were markedly increased compared to that of untreated control group, but antibacterial activity of HCME-F or HMEF-L for S. typhimurium and E. coli were not changed. Taken together, we demonstrated that methanol extract of HCME-F or HMEF-L showed the safety for RAW 264.7 cells and antibacterial activities for Gram's positive pathogenic bacteria St. aureus and Str. epidermidis. These findings suggest that a methanol extract of Kenaf flower or leaf may be useful alternatives of conventional chemotherapies for dermatitis and mastitis causing Gram's positive pathogens such as Stapylococcus spp. and Streptococcus spp. in domestic animals and humans.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.