DOI QR코드

DOI QR Code

Sprouting Inhibition after CIPC Spraying on Early and Mid-season Potato Varieties during Storage in Semi-underground Warehouse at Room Temperature in Summer

CIPC 처리한 조·중생종 감자의 반지하 저장고를 이용한 하계 실온저장 중 맹아 억제 효과 비교

  • Kyusuk Han (Potato Research Institute, Gangwon Agricultural Research & Extension Services) ;
  • Byung-Sup Kim (Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University) ;
  • Sae Jin Hong (Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University) ;
  • Young Hun Lee (East Coast Life Science Research Institute, Gangneung-Wonju National University)
  • 한규석 (강원도농업기술원 감자연구소) ;
  • 김병섭 (강릉원주대학교 식물생명과학과) ;
  • 홍세진 (강릉원주대학교 식물생명과학과) ;
  • 이영훈 (강릉원주대학교 동해안생명과학연구원)
  • Received : 2023.03.30
  • Accepted : 2023.04.28
  • Published : 2023.04.30

Abstract

This study was carried out to determine the sprouting period of early and mid-season varieties, which includes 'Atlantic', 'Chubaek', and 'Superior', during the summer storage period in a semi-underground warehouse without cooling system. And also it was investigated the effect of chlorpropham [Propan-2-yl N-(3-chlorophenyl)carbamate, CIPC] treatment on the sprouting inhibition for the varieties. This study was conducted to figure out a sprout inhibitory effect when CIPC was applied to 1kg of the potato tubers at concentrations of 10 mg and 20 mg which are lower than the treatment concentrations of ca 30 mg prescribed by the positive list system (PLS). The internal temperature of the warehouse used in this experiment was lowered by 5℃ or more than the outside temperature. The difference between the lowest and highest temperature during the experiment throughout the day was 5℃. It showed the effect of reducing to 1/2 of the difference in outdoor temperature. As for the sprouting of potatoes, the extremely early variety 'Chubaek' sprouts appeared at the 6th week of storage of control and it was the fastest sprouting potato among the control groups of the varieties. Sprouting began to appear in the Superior at the 6th week of storage, while the 'Atlantic' sprouted at the 8th week of storage. The appearance of sprouts was suppressed in all treatment groups of 'Atlantic' and 'Superior' varieties in CIPC treatments. Sprouts were observed in all treatment groups of 'Chubaek' after the 7th week, but the elongations of the sprouts in tubers were completely inhibited until the 8th week of storage. 'Atlantic' and 'Superior' seemed to have a sprouting inhibitory effect even with a low CIPC concentration of 10 mg·kg-1, with the exception of extremely early variety 'Chubaek' that breaks out of the dormancy quickly. Although weight loss occurred continuously during storage, it was minor loss of 0.7-1.6%. There was no consistent trend for changes of the loss in the varieties and CIPC treatments. Most common pathological disorder was the dry rot during the experiment, but only few were affected. The use of the tubers treated at 18℃ and 90% RH for 10 days and the rack of refrigeration system which lead to lack of convection seemed to have suppressed the spread of pathogens.

감자의 저장 한계기간을 결정하는 가장 주요한 요인은 병과 특히 맹아의 발생이다. 본 연구는 조·중생종 봄감자의 하계 저장기간 동안 고랭지 감자 재배단지에서 이용되고 있는 냉장 시스템이 없는 반지하 저장고에서 '대서', '수미', 그리고 '추백' 품종의 맹아 출현 시기를 확인하고, CIPC 처리 시 품종별 감자 괴경의 맹아억제 효과를 구명하고자 수행되었다. 본 연구는 농약 허용물질목록관리제도(PLS, positive list system)에서 규정한 처리농도보다 낮은 농도인 10mg와 20mg, 그리고 규정에 준하는 농도인 30mg의 CIPC가 감자 괴경 1kg에 도포되도록 처리 시 맹아 억제 효과를 보이는지 구명하였다. 본 실험에 이용된 토굴형 저장고는 내부 온도가 외기 온도보다 5℃ 이상 저하되었고, 특히 주야간 온도를 포함하여 실험기간 동안 최저와 최고 온도의 차이가 5℃ 정도로 외기온도 차이의 1/2 수준으로 줄였다. 품종별 감자의 맹아는 대조구에서 극조생종인 '추백'이 가장 빨라 저장 6주차에 50% 이상 맹아가 출현하였고 신장도 진행되었으며, '수미'는 저장 6주차에, '대서'는 저장 8주차에 각각 맹아가 출현하기 시작하였다. CIPC 처리 시 '대서'와 '수미'는 모든 처리구에서 맹아 출현이 억제되었다. '추백'은 7주차에 모든 처리구에서 맹아는 관찰되었으나 저장 8주차까지 괴경에서 맹아의 신장은 완전히 억제되었다. 휴면이 빨리 타파되는 극조생종인 '추백'을 제외하면 '대서'와 '수미'는 CIPC 처리 시 10mg·kg-1의 저농도 처리로도 맹아억제 효과를 보이는 것으로 판단된다. 저장 중 지속적으로 감모가 발생하였으나 저장 8주차까지 0.7-1.6%의 낮은 감모율을 보였으며, 품종 또는 CIPC 처리에 따른 변화는 일정한 경향이 없었다. 품종별 및 CIPC 처리구별로 저장 중 육안으로 관찰되는 병리장해는 대부분 마른썩음병(건부병)이었으나 발병 개체는 많지 않았다. 감모율과 병 발생이 적었던 이유는 본 실험에 이용된 시료가 18℃와 RH 90%에서 10일간 큐어링 처리한 후 육안 선별한 건전한 괴경이었으며, 저장고에 냉장시스템이 없어 대류현상이 발생하지 않아 무게감소와 병원균의 확산이 억제되었기 때문으로 사료된다.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업(과제번호: PJ01560603)의 지원에 의해 이루어진 것임.

References

  1. Bojanowski A,, T.J. Avis, S. Pelletier, and R.J. Tweddell 2013, Management of potato dry rot. Postharvest Biol Technol 84:99-109. doi:10.1016/j.postharvbio.2013.04.008
  2. Campbell M.A., A. Gleichsner, R. Alsbury, D. Horvath, and J. Suttle 2010, The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Mol Biol 73:181-189. doi:10.1007/s11103-010-9607-6
  3. Choi Y.M., S.L. Lyu, H.T. Lim 1996, Effects of sprout suppressants and storage temperatures on processing quality of potato tubers grown in summer season. J Korean Soc Hortic Sci 37:666-670. (in Korean)
  4. Corsini D., G. Stallknecht, and W. Sparks 1979, Changes in chlorpropham residues in stored potatoes. Am Potato J 56:43-50. doi:10.1007/BF02851122
  5. Environment Protection Agency (EPA) 1996, R.E.D. Facts, Chlorpropham. United States Environment Protection Agency, Washington, D.C., USA.
  6. Epp M. 2021, The worry with CIPC. Europeanseed. Available via https://european-seed.com/2021/04/the-worry-with-cipc/
  7. Jeong J.C., K.W. Park, and Y.J. Yang 1996, Effect of storage temperature and reconditioning on the processing quality of potato (Solanum tuberosum L.) tubers. J Korean Soc Hortic Sci 37:362-368. (in Korean)
  8. Kim S.Y., C.G. Kim, and J.C. Jeong 2005, Potato book. National Institute of Highland Agriculture, RDA, Pyeongchang, Korea.
  9. Kleinkopf G.E., N.A. Oberg, and N.L. Olsen 2003, Sprout inhibition in storage: Current status, new chemistries and natural compounds. Am J Potato Res 80:317-327. doi:10.1007/BF02854316
  10. Knowles L., and N.R. Knowles July 10, 2013. Enhancement of potato tuber sprouting inhibitors using various combinations of agents. European Patent Office. No.EP2611294A2
  11. Korea Crop Protection Association (KCPA) 2022, 2022 Guide book of pesticides. Samjung Press, Seoul, Korea, p 1473. (in Korean)
  12. Lee M.S. 1970, Effects of isopropyl AT-(3-chlorophenyl) carbamate on sprouting and metabolism of potato tubers. PhD Dissertation, Cornell University, NY, USA.
  13. Lee S.G. 1989, Potato storage and processing technology. Food Ind 98:42-56. (in Korean)
  14. Lewis M.D., M.K. Thornton, and G.E. Kleinkopf 1997, Commercial application of CIPC sprout inhibitor to storage potatoes. Cooperative Extension System.Agricultural Experiment Station. College of Agriculture, University of Idaho.
  15. Mahajan B.V.C., A.S. Dhatt, K.S. Sandhu, and A. Garg 2008, Effect of CIPC (isopropyl-N (3-chlorophenyl) carbamate) on storage and processing quality of potato. J Food Agric Environ 6:34-38.
  16. McGowan G., H. Duncan, A. Briddon, A. Cunnington, and A. Jina 2006, Review and development of the CIPC application process and its impact on potatoes stored for processing. Project report 2006/2. British Potato Council, Oxford, UK.
  17. Mehta A., B. Singh, R. Ezekiel, and D. Kumar 2010, Effect of CIPC on sprout inhibition and processing quality of potatoes stored under traditional storage systems in India. Potato Res 53:1-15. doi:10.1007/s11540-010-9146-1
  18. Olofsson B. 1970, Chemicals and methods to inhibit sprouting during storage of potatoes. Medd St VaxtskAnst 14:323-340.
  19. Park J.N., J.P. Kang, J.H. Kyoung, and C.S. Jeong 2007, Effects of warehouse types and packaging methods on the quality of potatoes after wound-healing. Korean J Hortic Sci Technol 25:311-315. (in Korean)
  20. Park Y.E., H.M. Cho, J.H. Cho, S.Y. Kim, and Y.T. Lim 2004, Effect of cultural conditions and maturity on processing characteristics of potato. Korean J Breed Sci 36:276-282. (in Korean)
  21. Paul V., R. Ezekiel, and R. Pandey 2016, Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. J Food Sci Technol 53:1-18. doi:10.1007/s13197-015-1980-3
  22. Rural Development Administration (RDA) 2022, Pesticide safety information system. Available via https://psis.rda.go.kr/psis/agc/res/agchmRegistStusLst.ps?menuId=PS00263 (in Korean)
  23. Statistics Korea 2022, Cultivated area of food crops (field). Korean Statistical Information Service. Available via https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01 (in Korean)
  24. Tiwari R.K., R. Kumar, S. Sharma, V. Sagar, R. Aggarwal, K.C. Naga, M.K. Lal, K.N. Chourasia, D. Kumar, and M. Kumar 2020, Potato dry rot disease: current status, pathogen-omics and management. 3 Biotech 10:503. doi:10.1007/s13205-020-02496-8
  25. Wharton P., R. Hammerschmidt, and W. Kirk 2007, Fusarium dry rot. Michigan potato diseases series. Michigan State University, MI, USA.