• Title/Summary/Keyword: 시스템 테스트 모델

Search Result 509, Processing Time 0.026 seconds

Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi (라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.620-626
    • /
    • 2020
  • This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net (Residual Multi-Dilated Recurrent Convolutional U-Net을 이용한 전자동 심장 분할 모델 분석)

  • Lim, Sang Heon;Lee, Myung Suk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed that a fully automatic multi-class whole heart segmentation algorithm using deep learning. The proposed method is based on U-Net architecture which consist of recurrent convolutional block, residual multi-dilated convolutional block. The evaluation was accomplished by comparing automated analysis results of the test dataset to the manual assessment. We obtained the average DSC of 96.88%, precision of 95.60%, and recall of 97.00% with CT images. We were able to observe and analyze after visualizing segmented images using three-dimensional volume rendering method. Our experiment results show that proposed method effectively performed to segment in various heart structures. We expected that our method can help doctors and radiologist to make image reading and clinical decision.

Research on DNN Modeling using Feature Selection on Frequency Domain for Vital Reaction of Breeding Pig (모돈 생체 반응 신호의 주파수 영역 Feature selection을 통한 DNN 모델링 연구)

  • Cho, Jinho;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.166-166
    • /
    • 2017
  • 모돈의 건강 상태를 정량 지수화 하기 위한 연구를 수행 중이다. 지제이상, 섭식 불량, 수면 패턴 등의 운동 특성 분석을 위하여 복수의 초음파 센서를 이용하였다. 시계열 계측 신호를 분석하여 정량 지수화를 수행하는 과정에서 주파수 도메인 분석을 시도하였다. 이 과정에서 주파수 도메인의 분해능에 따른 편차 극복을 위한 비선형 모델링을 수행하였다. 또한 인접한 시계열 데이터 구간 간의 상관성 분석이 가능하면 대용량 데이터의 실시간 처리로 인한 지연 시간 극복 및 기대되는 예후에 대한 조기 진단이 가능할 것이다. 본 연구에서는 구글에서 제공하는 Tensorflow와 NVIDIA에서 제공하는 CUDA 엔진을 동시 적용한 심층 학습 시스템을 이용하였다. 전 처리를 위하여 주파수 분해능 (2분, 3분, 5분, 7분, 11분, 13분, 17분, 19분)에 따른 데이터 집합을 1단계로 두고, 상위 10 순위 안에 드는 파워 스펙트럼 밀도의 크기를 2단계로 하여, 총 2~10개의 입력 노드를 순차적으로 선정하였고, 동일한 방식으로 인접한 시계열의 파워 스펙터럼 밀도를 순위를 변화시켜 지정하였다. 대표적인 심층학습 모델인 Softmax regression with a multilayer convolutional network를 이용하여 Recursive feature selection 경우의 수를 $8{\times}9{\times}9$로 총 648 가지 선정하고, Epoch는 10,000회로 지정하였다. Calibration 모델링의 경우 Cost function이 10% 이하인 경우 해당 경우의 학습을 중단하였으며, 모델 간 상호 교차 검증을 수행하기 위하여 $_8C_2{\times}_8C_2{\times}_8C_2$ 경우의 수에 대한 Verification test를 수행하였다. Calibration 과정 상 모든 경우에 대하여 10% 이하의 Cost function 값을 보였으나, 검증 테스트 과정에서 모든 경우에 대하여 $r^2$ < 0.5 인 결정 계수 값이 나타났다. 단적으로 심층학습 모델의 과도한 적합(Over fitting) 방식의 한계를 보인 것이라 판단할 수 있다. 적합한 Feature selection 및 심층 학습 모델에 대한 지속적이고 추가적인 고려를 통해 과도적합을 해소함과 동시에 실효적이고 활용 가능한 Classification을 위한 입, 출력 노드 단의 전후 Indexing, Quantization에 대한 고려가 필요할 것이다. 이를 통해 모돈 생체 정보 정량화를 위한 지능형 현장 진단 기술 연구를 지속할 것이다.

  • PDF

A Quantitative Analysis Theory for Reliability of Software (소프트웨어 신뢰성의 정량적 분석 방법론)

  • Cho, Yong-Soon;Youn, Hyun-Sang;Lee, Eun-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.500-504
    • /
    • 2009
  • A reliability of software is a type of nonfunctional requirement. Traditionally, a validation of the reliability is processed at the integration phase in software development life cycle. However, it increases the cost and the risk for the development. In this paper, we propose reliability analysis method based on mathematical analytic model at the architecture design phase of the development process as follows. First, we propose the software modeling methodology for reliability analysis using Hierarchical combined Queueing Petri Nets(HQPN). Second, we derive the Markov Reward Model from the HQPN based model. We apply our approach to the video conference system to verify the usefulness of our approach. Our approach supports quantitative evaluation of the reliability.

Formal Verification and Testing of RACE Protocol Using SMV (SMV를 이용한 RACE 프로토콜의 정형 검증 및 테스팅)

  • Nam, Won-Hong;Choe, Jin-Yeong;Han, U-Jong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.1-17
    • /
    • 2002
  • In this paper, we present our experiences in using symbolic model checker(SMV) to analyze a number of properties of RACE cache coherence protocol designed by ETRI(Electronics and Communications Research Institute) and to verify that RACE protocol satisfies important requirements. To investigate this, we specified the model of the RACE protocol as the input language of SMV and specified properties as a formula in temporal logic CTL. We successfully used the symbolic model checker to analyze a number of properties of RACE protocol. We verified that abnormal state/input combinations was not occurred and every possible request of processors was executed correctly We verified that RACE protocol satisfies liveness, safety and the property that any abnormal state/input combination was never occurred. Besides, We found some ambiguities of the specification and a case of starvation that the protocol designers could not expect before. By this verification experience, we show advantages of model checking method. And, we propose a new method to generate automatically test cases which are used in simulation and testing.

Analysis of English Ability Improvement Effect through a Hybrid Model using Online Contents and Video Conferencing (온라인 컨텐츠 및 화상회의를 활용한 하이브리드 모델을 통한 영어 능력 향상 효과 분석)

  • Song, JaeShin;Jung, SungMoo;Lee, JaeMu;Kim, JaMee;Cha, HyunJin
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.3
    • /
    • pp.31-40
    • /
    • 2009
  • English education taken with native English speakers is very effective, but it is hard to obtain English education with native English speakers in rural schools. In this study, therefore, we supported English education with on-line content and video conferencing with native English speakers. This study worked with one hundred fifty students from six elementary and middle schools equally distributed by city size over three months. This study performed experimental research by T-test comparing of pre- and post-tests of the hybrid model. In our results, the upper group showed greater improvement in understanding while the lower group showed more improvement in writing. In addition, the lower group showed more improvement than the upper group in overall English accomplishment.

  • PDF

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

Search Re-ranking Through Weighted Deep Learning Model (검색 재순위화를 위한 가중치 반영 딥러닝 학습 모델)

  • Gi-Taek An;Woo-Seok Choi;Jun-Yong Park;Jung-Min Park;Kyung-Soon Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.221-226
    • /
    • 2024
  • In information retrieval, queries come in various types, ranging from abstract queries to those containing specific keywords, making it a challenging task to accurately produce results according to user demands. Additionally, search systems must handle queries encompassing various elements such as typos, multilingualism, and codes. Reranking is performed through training suitable documents for queries using DeBERTa, a deep learning model that has shown high performance in recent research. To evaluate the effectiveness of the proposed method, experiments were conducted using the test collection of the Product Search Track at the TREC 2023 international information retrieval evaluation competition. In the comparison of NDCG performance measurements regarding the experimental results, the proposed method showed a 10.48% improvement over BM25, a basic information retrieval model, in terms of search through query error handling, provisional relevance feedback-based product title-based query expansion, and reranking according to query types, achieving a score of 0.7810.

Deep Learning-based Rail Surface Damage Evaluation (딥러닝 기반의 레일표면손상 평가)

  • Jung-Youl Choi;Jae-Min Han;Jung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.505-510
    • /
    • 2024
  • Since rolling contact fatigue cracks can always occur on the rail surface, which is the contact surface between wheels and rails, railway rails require thorough inspection and diagnosis to thoroughly inspect the condition of the cracks and prevent breakage. Recent detailed guidelines on the performance evaluation of track facilities present the requirements for methods and procedures for track performance evaluation. However, diagnosing and grading rail surface damage mainly relies on external inspection (visual inspection), which inevitably relies on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we conducted a deep learning model study for rail surface defect detection using Fast R-CNN. After building a dataset of rail surface defect images, the model was tested. The performance evaluation results of the deep learning model showed that mAP was 94.9%. Because Fast R-CNN has a high crack detection effect, it is believed that using this model can efficiently identify rail surface defects.