References
- 2017 Cause of Death Statistics, Seoul: National Statistical Office, pp. 10, 2018.
- R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," Proceeding of The IEEE Conference on Computer Vision and Pattern Recognition, pp.580-587, 2014.
- H. W. Noh, S. H. Hong, and B. H. Han, "Learning Deconvolution Network for Segmentation," Proceeding of The IEEE International Conference on Computer Vision, pp. 1520-1528, 2015.
- D. Cireşan, U. Meier, and J. Schmidhuber, "Multi-column Deep Neural Networks for Image Classification," Proceeding of The IEEE Conference on Computer Vision a (32nd Pattern Recognition, pp.3642-3649, 2012.
- M. Havaei, A. Davy, D. W. Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodoin, and H. Larochelle, "Brain Tumor Segmentation with Deep Neural Networks," Medical Image Analysis, Vol. 35, pp. 18-31, 2017. https://doi.org/10.1016/j.media.2016.05.004
- A. F. Frangi, W. J. Niessen, and M. A. Viergever, "Three-Dimentional Modeling for Functional Analysis of Cardiac Images: A Review," IEEE Transactions on Medical Imaging, Vol.20, pp.2-5, 2001. https://doi.org/10.1109/42.906421
- S. Sivakumar and C. Chandrasekar, "Lung Nodule Detection using Fuzzy Clustering and Support Vector Machines," International Journal of Engineering and Technology, Vol. 5, No.1, pp.179-185, 2013.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," Proceeding of International Conference on Medical Image Computer-Assisted Intervention, Vol.9351, pp.234-241, 2015.
- J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," Proceeding of The IEEE Conference on Computer Vision and Pattern Recognition, pp.3431-3440, 2015.
- Google Colaboratory, https://colab.research.google.com, (Accessed Aug, 6, 2019)
- M. Liang, and X. Hu, "Recurrent Convolutional Neural Network for Object Recognition," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.3367-3375, 2015.
- F. Yu, V. Koltun, and T. Funkhouser, "Dilated Residual Networks," Proceeding of The IEEE Conference on Computer Vision and Pattern Recognition, pp. 472-480, 2017.
- P. Mildenberger, M. Eichelberg, and E. Martin, "Introduction to the DICOM standard," European Radiology, Vol.12, pp. 920-927, 2002. https://doi.org/10.1007/s003300101100
- S. H. Lim, H. S. Choi, H. J. Bae, S. K. Jung, J. K, Jung, and M. S. Lee, "Multi-Class Whole Heart Segmentation using Residual Multi-dilated Convolution U-net," The KIPS Spring Conference 2019, Vol.26, No.1. pp.508-510, 2019.
- X. Zhuang and J. Shen, "Multi-scale patch and multimodality atlases for whole heart segmentation of MRI," Medical Image Analysis, Vol.31, pp.77-87, 2016. https://doi.org/10.1016/j.media.2016.02.006
- D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," Proceeding of International Conference on Learning Representations, 2015.
- C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, "Generalized Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations," Proceeding of Deep Learning in Medical Image Analysis and Multimodal Laerning for Clinical Decision Support, pp.240-248, 2017.