• Title/Summary/Keyword: 시설재배 토양

Search Result 390, Processing Time 0.024 seconds

Application Effect of Organic Fertilizer and Chemical Fertilizer on the Watermelon Growth and Soil Chemical Properties in Greenhouse (유기질비료와 화학비료의 시용수준에 따른 시설수박 생육과 토양화학성의 변화)

  • Uhm, Mi-Jeong;Noh, Jae-Jong;Chon, Hyong-Gwon;Kwon, Sung-Whan;Song, Young-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • BACKGROUND: Organic fertilizers in watermelon cultivation are widely used to supply nutrient and organic matter. This study was conducted to investigate the effects of application rate of organic fertilizer on the watermelon growth and soil chemical properties in greenhouse METHODS AND RESULTS: The organic fertilizers used in this experiment were mixed expeller cake (MEC) and mixed organic fertilizer (MOF). The treatments were conducted with 4 levels (1.0 N, 0.7 N, 0.5 N and 0.3 N) on the basis of soil testing nitrogen fertilization (STNF) using MEC or MOF as the basal dressing, and using chemical fertilizers (CF) as the additional dressing on the rest of STNF. These fertilizations were compared to CF 1.0 N (0.3 N as the basal and 0.7 N as the additional dressing) and non fertilization (NF). The leaf area of watermelon in treatment 0.5 N and 0.3 N using MEC or MOF was similar to CF treatment. The absorbed nutrient amounts by leaf, weight and sugar contents of fruit in the 0.5 N and 0.3 N treatments were higher than other treatments. In 0.5 N and 0.3 N treatments using MEC or MOF on the basis of STNF, soil chemical properties such as electrical conductivity (EC), available $P_2O_5$ and exchangeable K concentrations after experiment showed tendency to decreasing or similar level before experiment. CONCLUSION(s): These results suggest that the MEC or MOF application as the basal dressing at the 30~50% level of STNF and CF application as the additional dressing on the rest of STNF be best to maintain adequate nutrient of soil and to increase marketable yield for watermelon.

Effect of the mulching by the polyvinyl about satice cut flower quality in the vinyl houses (비닐하우스내 비닐피복이 스타티스 절화품질에 미치는 영향)

  • 정성수;김정만;정종성;최창학;최정식;김형무
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.05a
    • /
    • pp.71-73
    • /
    • 1997
  • 미스티블루는 안개초와 함께 배경화로서 널리 이용되는 꽃으로 사계성이지만 한 여름철에는 추대본수가 감소하고 봄, 가을에 분지가 활발히 이루어진다. 한 번 정식한 묘를 보통 3년간 재배 하고 있는데 시장의 꽃가격에 맞춰 개화기를 다양하게 조절하고 있다. 보통 비가림하우스 재배시 6월 ∼ 10월 사이에 개화하는데 여름철 고온에 의해 품질이 저하되고 있다. 본 실혐은 시설내에서 미스티블루 재배시 잡초의 발생을 억제하오 절화의 품질을 향상시키고자 몇가지 토양피복제를 처리하여 그 효과를 구명하고자 실시하였다. (중략)

  • PDF

Effect of Soil Water Potential on the Fruit Quality and Yield in Fertigation Cultivation of Paprika in Summer (여름철 파프리카 관비재배시 토양수분포텐셜이 과실품질 및 수량에 미치는 영향)

  • Rhee, Han Cheol;Choi, Gyoeng Lee;Jeong, Jae Woan;Cho, Myeung Hwan;Yeo, Kyung Hwan;Kim, Da Mi;An, Chul Geun;Lee, Dong Yul
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.378-384
    • /
    • 2013
  • This study was conducted to identify the effect of soil water potential on the fruit quality and yield of paprika in summer fertigation cultivation. Treatments of soil water potential during cultivation were composed of -10, -20, and -30 kPa, respectively. The plant height of early growth was increased by high soil water potential (-10 kPa) treatment all of 'Cupra' and 'E499524' (mini-paprika) varieties. Mean fruit weight was increased by -20 kPa soil water potential treatment compared with the other treatments. The fruit number per plant was not affected by soil water potential in 'Cupra' variety but was increased by -20 kPa soil water potential treatment in E499524 variety (mini-paprika). The yield of soil water potential treatment of -20 kPa was higher than those of the other treatments. The flesh thickness and sugar content were not affected by soil water potential in 'Cupra' and 'E499524' (mini-paprika) varieties. The incidence of fruit cracking was decreased with decreasing soil water potential. Mineral contents of plants such as nitrogen, potassium, calcium, magnesium etc. were not affected in soil water potential.

제주도 농업용 관정의 양수량 산정과 지하수 이용특성 연구

  • 박원배;고기원;김봉석;문덕철;양성기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.110-113
    • /
    • 2004
  • 제주도내에 개발ㆍ이용 중인 사설 농업용 44개 관정을 대상으로 2002년 11월부터 2003년 11월까지 1년간 지하수 이용량 모니터링 조사를 실시하였다. 재배작물 유형별 지하수 이용특성을 평가한 결과, 밭작물은 대체로 9월에서 11월 초순까지 집중적으로 지하수를 이용하고 있으며, 시설하우스의 경우에는 2월에서부터 10월말까지 비교적 지속적으로 지하수를 이용하고 있는 것으로 분석되었으나, 노지 감귤원은 가뭄이 아닌 경우에는 농약살포시 매우 소량의 지하수를 이용하고 있으며 이용시기도 매우 불규칙한 것으로 조사되었다. 평균 총 가동 일수는 시설하우스 및 밭작물에 혼용으로 사용하고 있는 지하수 관정의 128일로 최대치를 나타내고 있으며, 연간 지하수 총 이용량의 경우도 관정 가동 일수와 같은 경향을 나타내고 있다. 단위 면적(ha) 당 지하수 일 평균 이용량은 시설하우스가 74m$^3$/일으로 가장 많았고 밭작물이 50m$^3$/일로 조사되었다. 원격검침 시스템에 의해 얻어진 모니터링 테이터로부터 산정된 양수량과 계량기 검침에 의한 양수량과의 관계를 비교 분석한 결과, 상관계수가 $R^2$ =0.997을 나타내 수중모터펌프 가동시간 모니터링에 의한 양수량 산정방법이 매우 유효함이 입증되었다.

  • PDF

Effect of Silicate Fertilizer on Oriental Melon in Plastic Film House (시설재배 참외에 대한 규산 비료 시용 효과)

  • Lee, Sung-Ho;Cho, Hyun-Jong;Shin, Hyun-Jin;Shin, Yong-Sup;Park, So-Deuk;Kim, Bok-Jin;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.407-416
    • /
    • 2003
  • Although the requirement and optimum soil level of Si for oriental melon are still not well understood, silicate fertilizer is commonly applied to the oriental melon in plastic film houses where soil silicate level is relatively high. In this research the effects of silicate fertilizer on growth, fruit yield and fruit quality of oriental melon, and soil properties were investigated in plastic film house where the soil available silicate was $212mg\;SiO_2\;kg^{-1}$. Silicate fertilizer was applied in the rates of 100, 200, and $300kg\;10a^{-1}$. The application of silicate fertilizer could not increase the early growth of oriental melon, and also the fruit yield and quality were not different among the treatments. Available Si and P contents in soils and also Si and P contents in leaf of oriental melon of the different treatments were not significantly different. In the relationship between total Si in oriental melon leaf and soil silicate extracted by 1 N sodium acetate, optimum soil available silicate level for oriental melon was found to be around $100mg\;SiO_2\;kg^{-1}$. These results indicate that the additional silicate fertilization in soils of available silicate higher than $100mg\;SiO_2\;kg^{-1}$ is unnecessary, and such application of silicate can not have any beneficial effect on the growth and fruit yield of oriental melon.

Water Saving Irrigation Point in Cucumber Cultivation under Greenhouse (시설재배 오이의 물 절약 관개시점 구명)

  • Jeon, Sang-Ho;Hur, Seung-Oh;Ha, Sang-Keun;Jun, Hyun-Jung;Han, Kyung-Hwa;Cho, Hee-Rae;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.540-545
    • /
    • 2010
  • This study was conducted to investigate effects of irrigation points on cucumber growth and water saving under greenhouse. Automatic irrigation system and tensiometers were installed at four plots to measure soil water tension and properties of irrigated water. Each plot was irrigated at different irrigation points; soil water tension of 15, 20, 30, and 40 kPa, respectively. Conventional irrigation plot without tensiometer was also investigated. The total yield and sugar contents of cucumber had no significant differences between plots. However, irrigated water volumes were saved most when irrigation points were 30, and 40 kPa. The two plots of 30, and 40 kPa treatments used about 60% less of irrigated water than the plot of conventional practice did. In conclusion, this research suggested that the optimum irrigation point for cucumber cultivation in greenhouse can be soil water tension of 30 kPa based on the results of overall cucumber quality, and Greenhouse water usage.

Establishment of Critical Ranges of Inorganic Nutrition Contents in Leaves of Watermelon(Cucurbita citrullus L.) in Protected Cultivation (시설재배 수박 엽 적정양분함량 설정)

  • Lee, Ju-Young;Park, Jae-Hong;Jang, Byoung-Choon;Lee, Ki-Sang;Hyun, Byung-Keun;Hwang, Seon-Woong;Yoon, Young-Sang;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.158-163
    • /
    • 2008
  • This study was carried out to elucidate the relationship between yields and inorganic nutrient contents, and then establish of critical range of inorganic nutrient contents in leaves of watermelon in protected cultivation in Gochang from 2004 to 2006. In considering the yields and nutrient contents of watermelon, the critical ranges of macro-nutrient contents in leaves of watermelon at 20 days after transplanting were in N 5.0~6.6%, P 0.30~0.57%, K 3.5~4.2%, Ca 1.7~3.8% and Mg 0.20~0.42%, respectively. The critical ranges of micronutrient content, such as Fe, Mn, Zn, Cu and B, were not found the regular trend with different growth stages. However, the critical range of micronutrient contents in leaves of watermelon at 20 day after transplanting were in Fe 96~128, Mn 67~201, Zn 40~60, Cu 6~9 및 B $41{\sim}82mg\;kg^{-1}$, respectively. Finally, these results might be used at the indicator for critical nutrient contents for diagnosis of nutritional disorder in watermelon in protected cultivation.

Translocation of residual tricyclazole from soil to Korean cabbage (엇갈이 배추 재배토양 중 살균제 Tricyclazole의 작물 전이량)

  • Hwang, Eun-Jung;Hwang, Kyu-won;Kim, Min-Gi;Jeon, Chae-Ho;Moon, Joon-Kwan
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.301-306
    • /
    • 2017
  • This study was carried out to investigate the residual level of 5-methyl-1,2,4-triazolo[3,4-b][1.3] benzothiazole (tricyclazole) and the amount of transfer to Korean cabbage grown in treated soil with tricyclazole. The field trial on Korean cabbage was done at two different green houses located in Gwangju (Field 1) and Yongin (Field 2). Soil and cabbage samples were collected at different days after soil treatment of tricyclazole with two different concentration levels, respectively. Average recoveries of tricyclazole ranged from 83.5 to 92.1% in soil and cabbage and the variation coefficient was 1.3-6.8%. The initial concentrations of tricyclazole in field 1 soil were 4.25 and 8.97 mg/kg and decreased to 2.48 and 4.26 mg/kg at 43 DAT (day after treatment) and 0.88 and 2.02 mg/kg and decreased to 0.43 and 0.98 mg/kg at 36 DAT in field 2, respectively. The half-life of tricyclazole was about 39.6 and 28.1 days for the low and high concentration of tricyclazole treated soils in field 1 and 27.9 and 17.2 days for the low and high concentration of tricyclazole treated soils in field 2, respectively. Residual levels of tricyclazole in Korean cabbage were ranged from 4.03 to 18.26 and from 8.26 to 35.08% of initial concentration in filed 1 and field 2 soils, respectively.

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Effects of Soil Bulk Density on Saturated Hydraulic Conductivity and Solute Elution Patterns (토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상)

  • Kim, Pil-Joo;Lee, Do-Kyoung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.234-241
    • /
    • 1997
  • The effects of bulk densities(${\rho}_b$) on saturated hydraulic conductivity (Ksat) and solute elution patterns were investigated from five different bulk densities ranging from $1.1Mg/m^3$ to $1.5Mg/m^3$ with each increment of $0.1Mg/m^3$. The hydraulic conductivities observed were divided into two stages: (1) a linearly decrease with increase in bulk density up to $1.4Mg/m^3$, (2) a steady state where the bulk density is greater than $1.4Mg/m^3$. Using the saturated hydraulic conductivity at the steady state, we figured out the equation describing the correlation between bulk densities(${\rho}_b$) and saturated hydraulic conductivity(Ksat) as follows: $Ksat=-19.2({\rho}_b{^2})+6{\rho}_b+15.5$, (r=0.985). Electrical conductivity(EC) measured from the leachate of the soil column showed that EC at the same pore volume were decreased with an increase in the bulk density from $1.2g/cm^3$, $1.5g/cm^3$, as shown in the time taken to collect the same pore volume at each respective bulk density. The maximum relative concentrations (C/Co=1) from the breakthrough curves for the anions of $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$, which are weakly adsorbed on the soil particles, moved to the right of the graph, while a distinctive retardation occurs at the bulk density between $1.3Mg/m^3$ and $1.4Mg/m^3$. The time taken to recover about 90% of indigenous sulphate was approximately twice as those of chloride and nitrate, resulting in slightly stronger adsorption characteristics for sorption sites on the soil surface. Thus, we can conclude that the salt accumulation in green house soil might be significantly influenced by it's bulk density at the soil depth, as well as the adsorption capacity of ions for the sorption sites in soils.

  • PDF