• Title/Summary/Keyword: 시설물측량

Search Result 238, Processing Time 0.02 seconds

Developing A Multi-dimensional Spatio-visual Information System (다차원기반 고정밀 공간영상정보 시스템 구축에 관한 연구)

  • Kim, Mi-Yun;Yeo, Wook-Hyun;Choi, Jin-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.649-658
    • /
    • 2009
  • The recent emergence of the paradigm of new urban planning for building intelligent urban spaces, such as U-City and U-Eco City, of which the concept of ubiquitous technology is applied, requires high quality three-dimensional spatial information of the urban area. The aim of this study is to build a multi-dimensional spatio-visual information system that includes the solution for visualization, spatial information search, analysis, and evaluation by integrating various types of 3D-modeled spatial information concerning the large urban-size area based on the latest GIS application technology. The range of this study is the integration, visualization, and utilization of spatial information with the goal of building 3D virtual urban environment of high-quality and high-resolution by increasing the utilization of the systematic urban facilities in order to fully reflect the actual user's needs, using the aerial LiDAR data as the plan to overcome the limitations of the existing 3D urban modeling. By reproducing the virtual urban environment the most similar to the actual world through the mash-up of satellite images and aerial photos on the standard format of spatial information constituted of properties and signs, the system will be built with many analysis and utilization functions that support the view and sunlight analysis, various administrative tasks, as well as the decision making process of the city.

Building Large-scale CityGML Feature for Digital 3D Infrastructure (디지털 3D 인프라 구축을 위한 대규모 CityGML 객체 생성 방법)

  • Jang, Hanme;Kim, HyunJun;Kang, HyeYoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.187-201
    • /
    • 2021
  • Recently, the demand for a 3D urban spatial information infrastructure for storing, operating, and analyzing a large number of digital data produced in cities is increasing. CityGML is a 3D spatial information data standard of OGC (Open Geospatial Consortium), which has strengths in the exchange and attribute expression of city data. Cases of constructing 3D urban spatial data in CityGML format has emerged on several cities such as Singapore and New York. However, the current ecosystem for the creation and editing of CityGML data is limited in constructing CityGML data on a large scale because of lack of completeness compared to commercial programs used to construct 3D data such as sketchup or 3d max. Therefore, in this study, a method of constructing CityGML data is proposed using commercial 3D mesh data and 2D polygons that are rapidly and automatically produced through aerial LiDAR (Light Detection and Ranging) or RGB (Red Green Blue) cameras. During the data construction process, the original 3D mesh data was geometrically transformed so that each object could be expressed in various CityGML LoD (Levels of Detail), and attribute information extracted from the 2D spatial information data was used as a supplement to increase the utilization as spatial information. The 3D city features produced in this study are CityGML building, bridge, cityFurniture, road, and tunnel. Data conversion for each feature and property construction method were presented, and visualization and validation were conducted.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.

A Study on the Development of an Automated Inspection Program for 3D Models of Underground Structures (지하구조물 3차원 모델 자동검수 프로그램 개발에 관한 연구)

  • Kim, Sung Su;Han, Kyu Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.413-419
    • /
    • 2022
  • As the development of the underground space becomes active, safety accidents related to the underground are frequently occurring in recent years. In this regard, the Ministry of Land, Infrastructure and Transport is enforcing the 『Special Act on Underground Safety Management』 (enforced on January 1, 2018, hereafter referred to as the Underground Safety Act). Among the core contents of the Underground Safety Act, underground facilities(water supply, sewage, gas, power, communication, heating) buried underground, underground structures(subway, underpass, underpass, underground parking lot, underground shopping mall, common area), ground (Drilling, wells, geology) of 15 types of underground information can be checked at a glance on a three-dimensional basis by constructing an integrated underground spatial map and using it. The purpose of this study is to develop a program that can quickly inspect the three-dimensional model after creating a three-dimensional underground structure data among the underground spatial integration maps. To this end, we first investigated and reviewed the domestic and foreign status of technology that generates and automatically inspects 3D underground structure data. A quality inspection program was developed. Through this study, it is judged that it will be meaningful as a basic research for improving the quality of underground structures on the integrated map of underground space by automating more than 98% of the 3D model inspection process, which is currently being conducted manually.

Vegetation filtering techniques for LiDAR data of levees using combined filters with morphology and color (형태와 색상의 복합형 필터를 이용한 제방 LiDAR 측량 데이터의 식생 영상 제거 기법 연구)

  • Park, Heeseong;Lee, Du Han
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.139-150
    • /
    • 2023
  • Terretial LiDAR surveying is highly useful for maintenance of civil facilities as it can easily detect the temporal deformation of structures or topography. However, for river facilities such as levess, it is difficult to detect the deformation of the topography or structure under vegetations due to the influence of vegetation. Vegetation filters can be divided into color filters and morphological filters. In this study, combined filters with color and morphology are developed to improve the accuracy of vegetation filters. 8 color filters, 6 morphological filters, and 4 combined filters are applied to the vegetation removal on the embankment slope, and their accuracy and calculation time are compared. Color filters show a short calculation time, but the accuracy was low in the vegetation area. Morphological filters show high accuracy in the vegetation area, but low accuracy in places with severe local topographical changes such as heavy rocks. Combined filters also show a tendency similar to morphological filters, but in the case of ExGGM, the accuracy is excellent in both the vegetation and rock area. Considering the accuracy and calculation time, the combined filter ExGGM is suitable for general cases, and the shape filter GrMIn or the complex filter ExGISL is suitable for cases where the local topographical change is not severe.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

A Study on Underwater-Pipe Video Image Mosaicking using Digital Photogrammetry (수치사진측량을 이용한 수중 파이프 비디오 모자익 영상 제작에 관한 연구)

  • Kang, Jin-A;Kwon, Kwang-Seok;Kim, Byung-Guk;Oh, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.150-160
    • /
    • 2008
  • The present domestic underwater and ocean facilities management depends on analysis with the naked eye. This study performs quantitative analysis to improve conventional methods, analyze spatial situation of underwater facilities. This research is divided into two steps; underwater image distortion correction and image mosaic step. First, underwater image distortion correction step is for the production of underwater target, calculates the correction parameters, and then developed the method that convert the original image point to whose distortion is corrected. Second step is for the obtaining pipe images installed in the underwater, corrects the distortion, and then transforms a coordinates of the correction pipe image. After coordinate transformation, we make the mosaic image using the singularities. As a result, when we measure the distance between pipe and underwater ground and compare with calculation value on mosaic image, it is showed that RMSE is 0.3cm.

  • PDF

Construction of Information System for Cultural Heritages Management Using Web (웹을 이용한 문화재 관리 정보시스템 구축)

  • Jang, Ho-Sik;Roh, Tae-Ho;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.63-68
    • /
    • 2004
  • Since 20th century, the rapid growth in economy development and ill-advisable construction of infrastructure which causing injury of nature has generated an El Nino phenomenon problems. For this reason, establishment of heritage preservation plan is being required to prevent damages of important cultural assets from natural disaster. In this study, we obtained both 3D-dxf and VRML-wrl(which support 3D image) files from stone pagodas(stone cultural heritages) by using the digital photogrammetric program. Then database are formed by these two files with other attribute informations. And we made existing cultural heritages management information data format to be unified using JAVA, HTML, and Cosmo Player. Thus, we could construct the web-server for Cultural Heritages Management Information System to contribute not only effective management but also ease of use for expert or amateur user in using of cultural assets informations. And, in virtual reality system, we could make texture presented like as actual texture by using the VRML program.

  • PDF

A Study on the Reproducibility of 3D Shape Model of Garden Cultural Heritage using Photogrammetry with SNS Photographs - Focused on Soswaewon Garden, Damyang(Scenic Site No.40) - (SNS 사진과 사진측량을 이용한 정원유산의 3차원 형상 재현 가능성 연구 - 명승 제40호 담양 소쇄원(潭陽 瀟灑園)을 대상으로 -)

  • Kim, Choong-Sik;Lee, Sang-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.94-104
    • /
    • 2018
  • This study examined photogrammetric reconstruction techniques that can measure the original form of a cultural property utilizing photographs taken in the past. During the research process, photographs taken in the past as well as photograph on the internet of Soswaewon Garden in Damyang(scenic site 40) were collected and utilized. The landscaping structures of Maedae, Aiyangdan, Ogokmun Wall, and Yakjak and natural scenery Gwangseok, of which photographs can be taken from any 360 degree direction from a close distance or a far distance without any barriers in the way, were selected and tested for the possibility of reproducing three-dimensional shapes. The photography method of 151 landscape photographs (58.6%) from internet portal sites for the aforementioned five landscape subjects containing information on the date the photograph was taken, focal length, and exposure were analyzed. As a result of the analysis, it was revealed that the majority of the photographs tend to focus on important parts of each subject. In addition, we discovered that there are two or three photography methods that internet users preferred in regards to each landscape subject. For the purposes of the experiment, photographs in which a single scene consistently appears for each landscape subject and it was determined that there was a high level of preference related to the photography method were analyzed, and three-dimensional mesh shape model was produced with a photoscan program to analyze the reproducibility of three-dimensional shapes. Based on the results of the reproduction, it was relatively possible to reproduce three-dimensional shapes for artifacts such as Ogukmun wall, Maedae, and Aeyangdan, but it was impossible to reproduce three-dimensional images for natural scenery or an object that has similar texture such as Yakjak and Gwangseok. As a result of experimentation related to the reconstruction of three-dimensional shapes with the photographs taken on site using a photography method similar to that of the photographs selected as previously mentioned, there was success related to reproducing the three-dimensional shapes of Yakjak and Gwangseok, of which it was not possible to do so through the photographs that had been collected previously. In addition, through comparison of past and present images, it was possible to measure the exact sizes as well as discover any changes that have taken place. If past photographs taken by tourists or landscape architects of cultural properties can be obtained, the three-dimensional shapes from a particular period of time can be reproduced. If this technology becomes widespread, it will increase the level of accuracy and reliability in regards to measuring the past shapes of cultural landscape properties and examining any changes to the properties.

Robust Location Tracking Using a Double Layered Particle Filter (이중 구조의 파티클 필터를 이용한 강인한 위치추적)

  • Yun, Keun-Ho;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1022-1030
    • /
    • 2006
  • The location awareness is an important part of many ubiquitous computing systems, but a perfect location system does not exist yet in spite of many researches. Among various location tracking systems, we choose the RFID system due to its wide applications. However, the sensed RSSI signal is too sensitive to the direction of a RFID reader antenna, the orientation of a RFID tag, the human interference, and the propagation media situation. So, the existing location tracking method in spite of using the particle filter is not working well. To overcome this shortcoming, we suggest a robust location tracking method with a double layered structure, where the first layer coarsely estimates a tag's location in the block level using a regression technique or the SVM classifier and the second layer precisely computes the tag's location, velocity and direction using the particle filter technique. Its layered structure improves the location tracking performance by restricting the moving degree of hidden variables. Many extensive experiments show that the proposed location tracking method is so precise and robust to be a good choice for implementing the location estimation of a person or an object in the ubiquitous computing. We also validate the usefulness of the proposed location tracking method by implementing it for a real-time people monitoring system in a noisy and complicate workplace.