• Title/Summary/Keyword: 시멘트 결합재

Search Result 254, Processing Time 0.029 seconds

A STUDY ON THE BONDING OF COMPOMER TO DECIDUOUS DENTIN (컴포머와 유치 상아질의 결합에 관한 연구)

  • Kim, Jee-Tae;Kim, Yong-Kee;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • The purpose of this study was to evaluate the bonding of compomer to deciduous dentin which is known to have been developed to improve the weak properties of glass ionomer cement and composite resin. 120 sound primary molars were used for the shear bond strength test and another 24 for the scanning electron microscopic evaluation. Each material was ailed into polyethylene mold attached to exposed dentinal surface($3{\times}4mm$ in diameter) of sample blocks. Shearbond strength was measured using Universal testing machine and data were analyzed statistically with Oneway-ANOVA and Scheffe test. Scanning electron microscopic observation was performed in order to evaluate the pattern of distribution and penetration of resin tags and hybrid layer. Compomer groups(II-V) showed significantly higher bond strength values than glass ionomer group(I)(p<.05). Etching-compomer groups(III, V) showed the significantly higher bond strength than non-etching compomer groups(II, IV)(p<.05), but slightly lower values than composite resin group(VI) with no statistically significant difference(p>.05). No significantly different bond strength was found between compomer groups of different bonding system(p>.05). Scanning electron micrographs showed more irregular distribution of short and thin resin tags in non-etching compomer groups(II, IV) whereas the more regular and intimate distribution of long and thick tags in etching compomer groups(III, V) and composite resin group(VI). The evaluation of hybrid layer also showed more regular formation of thicker layer in etching compomer groups(III, V). Based on the results of present study, the use of compomer as an esthetic restorative material for primary molars might be justified.

  • PDF

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite (3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동)

  • Chang-Jin Hyun;Ki-Seong Kwon;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • In this study, we employed Highly Ductile Cement Composite (HDCC) to evaluate the flexural performance of a RC slab that simulates the laminating structure of a seashell. To evaluate flexural performance, we produced conventional RC slab specimens, HDCC slab specimens, and HDCC-M slab specimens which biomimics a seashell's layered structure by inserting PE mesh inside the slab made of HDCC. A series of 4-point bending tests were conducted. Experimental results shows the flexural strength of the HDCC-M slab specimen was 1.7 times and 1.2 times higher than that of the RC and HDCC slab specimens, respectively. Furthermore, the ductility was evaluated using the ratio of yield deflection to maximum deflection, and it was confirmed that the HDCC slab test specimen exhibited the best ductility. This is most likely due to the fact that the inserted PE mesh separates the layers and increases ductility, while the HDCC passing through the mesh prevents the loss of load carrying capacity due to layer separation.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Corrosion Resistance of Blended Concrete and Its Application to Crack Healing (혼합 콘크리트의 부식 저항성과 균열 치유 적용)

  • Lee, Chang-Hong;Kim, Tae-Sang;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.689-696
    • /
    • 2009
  • In this study, electro-deposition method was applied to heal cracks in various blended concrete. The performance of the method was indirectly monitored by measuring impressed voltage, electrolyte, galvanic current monitoring, linear polarization resistance, and directly by image analysis of the cracks. The indirect and direct monitoring values are compared to develop guidelines for relating the indirect measures to actual crack healing. As a result, It was found that impressed voltage was convergence to 2.9V after 20000 minutes. From the galvanic current test results of artificial crack healing, the corrosion resistance showed that the order of 0.4 $>$ 0.6 $>$ 0.5 water to cement ratio. Furthermore, in view of binder, the corrosion resistance order was calculated OPC $>$ 60%GGBS $>$ 10%SF $>$ 30%PFA. Finally, It was found that 76.47% of healed crack surface calculated from the artificial crack healing technique using electrochemical deposition method.

The Self-healing and Ageing Effect of OPC-GGBFS Cement in Sea-water and Tap-water (해수와 담수에서 OPC-GGBFS 시멘트의 자기치유와 재령효과)

  • Kim, Tae-Wan;Kang, Choonghyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • The paper presents experimental results of self-healing effects of OPC-GGBFS paste with cracked and uncracked specimens. The self-healing of cracked specimens is processes of crack closing with re-hydration of unhydrated in crack surface. The OPC paste with GGBFS replacement ratios of 0%, 10%, 20% and 30% were prepared having a constant water-binder ratios of 0.5. The OPC-GGBFS paste specimens immersed in tap-water and sea-water. The temperature of tap and sea-water was $5^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$. The cracked specimens after deterioration were immersed for 60 days. The relationship between self-healing effect and age-effect was calculate based upon the experimental results. The self-healing effect was measured in ultrasonic pulse velocity (UPV) before and after loading. When the relative change rate of UPV is increases with the increase in GGBFS replacement ratios. Moreover, the self-healing effect is increased with the temperature of tap-water is increase. But the cracked specimens immersed in sea-water was unclear effects of different temperature. Furemore, most of the healing for OPC-GGBFS specimens immersed in tap-water and sea-water occurred during the first 30 days. The self-healing effect until 30 days is higher than that the age-effect. After 30 days, self-effect and age-effect was largely decreases. SEM/EDS analysis of crack on the surface of the specimens in tap-water were covered with aragonite, and sea-water were covered with brucite.

An Experimental Study on Early Strength and Drying Shrinkage of High Strength Concrete Using High Volumes of Ground Granulated Blast-furnace Slag(GGBS) (고로슬래그 미분말을 대량 사용한 고강도 콘크리트의 조기강도 및 길이변화 특성에 관한 실험적 연구)

  • Yang, Wan-Hee;Ryu, Dong-Woo;Kim, Woo-Jae;Park, Dong-Cheol;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.391-399
    • /
    • 2013
  • For high strength concrete of 40~60 MPa, the effects on the early strength and concrete dry shrinkage properties replacing 60~80% of Ordinary Portland Cement with Blast Furnace Slag Powder and using the Alkali Activator (Modified Alkali Sulfate type) are considered in this study. 1% Alkali Activator to the binder, cumulative heat of hydration for 72 hours was increased approximately 45%, indicating that heat of hydration contributes to the early strength of concrete, and the slump flow of concrete decreased slightly by 3.7~6.6%, and the 3- and 7- strength was increased by 8~12%, which that the Alkali Activator (Modified Alkali Sulfate type) is effective for ensuring the early strength when manufacturing High Strength Concrete (60%) of Blast Furnace Slag Powder. Furthermore, the dry shrinkage test, both 40 MPa and 60 MPa specimens had level of length changes in order of BS40 > BS60 > BS60A > BS80A, and the use of the Alkali Activator somewhat improved resistance to dry shrinkage.

Early Frost Damage and Diagnose of Damage Depth Due to Early Frost Damage of the Concrete According to the Thickness of Members (부재 두께 변화에 따른 콘크리트의 초기동해 특성 분석 및 깊이진단)

  • Kim, Tae-Woo;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • Recently, there are many structures exposed to severe outdoor environments, which results in rapid degradation of durability of the concrete structures. there can be rapid deterioration of the concrete structures from early frost damage due to the insufficient curing in low outdoor temperature condition. The objective of this study is to investigate the effect of thickness change conditions and binding material on early frost damage depth of the concrete exposed to cold weather in winter, and is to clearly assess damage depth of the concrete structure due to early frost damage. Specimens with 300x300x(150, 200, 250, 300mm) were prepared. OPC and OPC+FA+BS were adopted for binders. Test results indicate that the depth of the early frost damage was deeper with the decrease of thickness of members. The brightness of specimens were reduced when the member thickness was thinner. When determining the depth of early frost damage, it can be distinguished into dark color and relatively bright color when dried for approximately 30 minutes in the indoors of $20^{\circ}C$ in temperature and 60% in relative humidity after submerging in water for 24 hours. The dark colored part can be determined easily when measured with vernier calipers.

Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing (3D 프린팅용 모르타르의 초기재령 수축거동 평가를 위한 실험적 연구)

  • Seo, Eun-A;Yang, Keun-Hyeok;Lee, Ho-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Since the 3D printing mortar is exposed to the atmosphere immediately after printing, moisture is largely evaporated from the surface of the layer. The evaporation of moisture on the surface of the layer greatly causes drying shrinkage and increases the risk of cracking and damage to the structure due to drying shrinkage. This study experimentally evaluated the shrinkage behavior of the initial age using the mortar used for 3D printing. The change in shrinkage was evaluated by comparing the shrinkage of the specimen cured by the sealing method and the atmospheric exposure method. In addition, compared with the case where type 1 cement was used 100%, the shrinkage amount was evaluated when 20% of fly ash was replaced and 10% of silica fume was used. In particular, the effect of three chemical admixtures applied using 3D printing on shrinkage was evaluated experimentally. When fly ash and silica fume were used, the shrinkage amount increased by 60 - 110% compared to the case when type 1 cement was used. The application of viscosity modifiers and shrinkage reducers reduced the shrinkage by at least 18% and at most 70% depending on the curing conditions. The temperature of the specimen temporarily decreased to 15 ℃ at the beginning of curing, and the correlation between the internal temperature of the specimen and the shrinkage behavior was observed.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.