Acknowledgement
이 논문은 2020년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(2020R1I1A3074544).
References
- Alhawat, M., Khan, A., and Ashour, A. (2020), Evaluation of Steel Corrosion in Concrete Structures Using Impact-Echo Method, Advanced Materials Research, 115, 147-164. DOI: 10.4028/www.scientific.net/AMR.1158.147
- ASTM International, (2022), Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method: ASTM C1383-15, West Conshohocken, PA, USA.
- Coleman, Z. W., Schindler, A. K., and Jetzel, C. M. (2021), Impact-Echo Defect Detection in Reinforced Concrete Bridge Decks without Overlays, Journal of Performance of Constructed Facilities, 35(5), 1-11. DOI: 10.1061/(ASCE)CF.1943-5509.000163
- Coleman, Z. W., and Schindler, A. K. (2022), Investigation of Ground-Penetrating Radar, Impact Echo, and Infrared Thermography Methods to Detect Defects in Concrete Bridge Decks, Transportation Research Record, 036119812211010. DOI: 10.1177/03611981221101027
- Gibson, A., and Popovics, J. S. (2015), Lamb Wave Basis for Impact-Echo Method Analysis, ASCE Journal of Engineering Mechanics, 131(4), 438-443. DOI: 10.1061/(ASCE)0733-9399(2005)131:4(43)
- Golewski, G. L., and Sadowski, T. (2016), A Study of Mode III Fracture Touchness in Young and Mature Concrete with Fly Ash Additive, Solid State Phenomena, 254, 120-125. DOI: 10.4028/www.scientific.net/SSP.254.120
- Gucunski, N., Slabaugh, G. G., Wang, Z., Fang, T., and Maher, A. (2008), Impact echo data from bridge deck testing: Visualization and interpretation, Transportation Research Record, 2050, 111-121. DOI: 10.3141/2050-11
- Hong, S.-U., and Cho, Y.-S., (2008), A Study Using Rebound Method and Impact Echo Method for the Comparison of the Compressive Strength of Concrete Slab, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(3), 199-207 (in Korean).
- Kee, S.-H., and Gucunski, N., (2016), Interpretation of Flexural Vibration Modes from Impact-Echo Testing, ASCE Journal of Infrastructure Systems, 22(3),04016009. DOI: 10.1061/(ASCE)IS.1943-555X.0000291
- Jiang, W., Xie, Y., Wu, J., Guo, J., and Long, G. (2021), Identifying Bonding Interface Flaws in CRTS III type Ballastless Track Structure Using the Impact-Echo Method, Engineering Structures, 227(15), 111429. DOI: 10.1016/j.engstruct.2020.111429
- Kee, S.-H., Oh, T., Popovics, J. S., Arndt, R. W., and Zhu, J., (2012), Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography, ASCE Journal of Journal of Bridge Engineering, 17(6), 928-939. DOI: 10.1061/(ASCE)BE. 1943-5592.0000350
- Khan, M., and Ali, M. (2019), Improvement in concrete behavior with fly ash, Silica-Fume and Coconut Fibres, 203(10), 174-187. DOI: 10.1016/j.conbuildmat.2019.01.103
- Kim, J.-S., Lee, C. J., and Shin, S. W., (2011), Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(3), 171-177 (in Korean). https://doi.org/10.11112/jksmi.2011.15.3.171
- Korean Standard Association, (2022), Korean Standard for Compressive STrength of Concrete: KS F 2405, Seoul, South Korea.
- Lam, L., Wong, Y.L, and Poon, C.S. (1998), Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete, Cement and Concrete Research, 28(2), 271-283. DOI: 10.1016/S0008-8846(97)00269-X
- Lee, C., Kee, S., Kang, J., Choi, B., and Lee, J. (2020), Interpretation of Impact-echo testing data from a fire-damaged reinforced concrete slab using a discrete layered concrete damage model, Sensors, 20(20), 5838. DOI: 10.3390/s20205838
- Lee, I., Kwon, S., Park, J., and Oh, T. (2018), The effective near-surface defect identification by dynamic behavior associated with both impact-echo and flexural modes for concrete structures, KSCE Journal of Civil Engineering, 22(2), 747-754. DOI: 10.1007/s12205-017-1433-9
- Lee, S.-H., Kim, S. J., Endo, T., and Sagara, Y., (2011), Probe of Unfilled Sheath of Prestressed-Concrete Girder Bridge Using Impact-Echo Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 112-119 (in Korean). https://doi.org/10.11112/jksmi.2011.15.1.112
- Liang, M., and Su, P. (2001), Detection of the corrosion damage of rebar in concrete using Impact-echo method, Cement and Concrete Research, 31(10), 1427-1436. DOI: 10.1016/S0008-8846(01)00569-5
- Nowotarski, P., Dubas, S., and Milwicz, R. (2017), Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing, IOP Conference Series: Materials Science and Engineering, 245(3), 232098. DOI: 10.1088/1757-899X/245/3/032098
- Oh, B. D., Choi, H., Song, H. J., Kim, J. D., Park C. Y., and Kim, Y. S. (2020), Detection of Defect Inside Duct Using Recurrent Neural Network, Sensors and Materials, 32(1), 171-182. DOI: 10.18494/ SAM.2020.2578
- Razak, N., Senin, S., and Hamid, R. (2015), Detection of sizes and locations air voids in reinforced concrete slab using ground penetrating radar and Impact-Echo methods, Jurnal Teknologi, 74(3), 63-67. DOI: 10.11113/jt.v74.4553
- Rickad, L., and Choi, W. (2016), Evaluation of Subsurface Damage in Concrete Deck Joints Using Impact Echo Method, Advances in Materials Science and Engineering, 8230398. DOI: 10.1155/2016/ 8230398
- Sano, S., Mizobuchi, T., Shimbo, H., Ozeki, T., and Nojima, J. (2022), Computational Modelling of Concrete and Concrete Structures, CRC Press, London, 148-153. DOI: 10.1201/9781003316404
- Zaki, A., Chai, H. K., Aggelis, D. G., and Alver, N. (2015), Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique, Sensors, 15, 19069-19101. DOI: 10.3390/s150819069
- Zhang, J. K., Yan, W., and Cui, D. M. (2016), Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines, Sensors, 16, 1-17. DOI: 10.3390/s16040447