DOI QR코드

DOI QR Code

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing

충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가

  • Rizky Pitajeng (Department of ICT Integrated Ocean Smart Cities Engineering, Busan, Dong-A University) ;
  • Julfikhsan Ahmad Mukhti (Department of ICT Integrated Ocean Smart Cities Engineering, Busan, Dong-A University) ;
  • Seong-Hoon Kee (Department of ICT Integrated Ocean Smart Cities Engineering, Busan, Dong-A University)
  • 피타젱 리즈키 (동아대학교 ICT 융합 해양스마트시티 공학과) ;
  • 줄피크산 아흐마드 무크티 (동아대학교 ICT 융합 해양스마트시티 공학과) ;
  • 기성훈 (동아대학교 ICT 융합 해양스마트시티 공학과)
  • Received : 2024.04.24
  • Accepted : 2024.05.25
  • Published : 2024.06.30

Abstract

This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

본 연구에서는 충격반향법(IE)을 활용하여 철근 부식 진전에 따른 콘크리트 손상 상태를 모니터링하였다. 길이 1500 mm, 폭 400 mm, 두께 200 mm를 갖는 세 개의 철근 콘크리트 시험체를 제작하였다. 각 시험체는 보통 포틀랜드 시멘트, 고로 슬래그 미분말, 플라이 애쉬를 혼합한 세 가지 콘크리트 배합을 활용하여 제작하여, 결합재 특성에 따른 손상특성을 관찰하였다. 콘크리트 내 철근 부식은 3% NaCl 용액에서 35일 주기의 습윤 및 건조 포화 과정을 거친 후 0.5 A 전류를 인가하여 가속화되었다. 전류인가 전 습윤-건조반복(철근부식 환경조성 또는 잠재기)단계에서 수집된 초기 IE 데이터는 건조상태가 IE 신호에 미치는 영향이 크기 않음을 보여주었다. 전류를 인가한 후에는 인가 시간 증가에 따라 IE 탁월주파수와 콘크리트 P파속도의 점진적인 감소 특성을 관찰할 수 있었다. 이러한 실험결과는 IE 데이터 모니터링으로 철근 부식으로 인한 콘크리트의 점진적 손상의 주요 특성(내부 손상 개시 및 전파 속도 등)을 포착할 수 있음을 보여준다. 따라서, 철근 부식에 따른 콘크리트의 점진적 손상의 평가 및 예측에 IE 모니터링이 효과적으로 활용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2020년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(2020R1I1A3074544).

References

  1. Alhawat, M., Khan, A., and Ashour, A. (2020), Evaluation of Steel Corrosion in Concrete Structures Using Impact-Echo Method, Advanced Materials Research, 115, 147-164. DOI: 10.4028/www.scientific.net/AMR.1158.147
  2. ASTM International, (2022), Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method: ASTM C1383-15, West Conshohocken, PA, USA.
  3. Coleman, Z. W., Schindler, A. K., and Jetzel, C. M. (2021), Impact-Echo Defect Detection in Reinforced Concrete Bridge Decks without Overlays, Journal of Performance of Constructed Facilities, 35(5), 1-11. DOI: 10.1061/(ASCE)CF.1943-5509.000163
  4. Coleman, Z. W., and Schindler, A. K. (2022), Investigation of Ground-Penetrating Radar, Impact Echo, and Infrared Thermography Methods to Detect Defects in Concrete Bridge Decks, Transportation Research Record, 036119812211010. DOI: 10.1177/03611981221101027
  5. Gibson, A., and Popovics, J. S. (2015), Lamb Wave Basis for Impact-Echo Method Analysis, ASCE Journal of Engineering Mechanics, 131(4), 438-443. DOI: 10.1061/(ASCE)0733-9399(2005)131:4(43)
  6. Golewski, G. L., and Sadowski, T. (2016), A Study of Mode III Fracture Touchness in Young and Mature Concrete with Fly Ash Additive, Solid State Phenomena, 254, 120-125. DOI: 10.4028/www.scientific.net/SSP.254.120
  7. Gucunski, N., Slabaugh, G. G., Wang, Z., Fang, T., and Maher, A. (2008), Impact echo data from bridge deck testing: Visualization and interpretation, Transportation Research Record, 2050, 111-121. DOI: 10.3141/2050-11
  8. Hong, S.-U., and Cho, Y.-S., (2008), A Study Using Rebound Method and Impact Echo Method for the Comparison of the Compressive Strength of Concrete Slab, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(3), 199-207 (in Korean).
  9. Kee, S.-H., and Gucunski, N., (2016), Interpretation of Flexural Vibration Modes from Impact-Echo Testing, ASCE Journal of Infrastructure Systems, 22(3),04016009. DOI: 10.1061/(ASCE)IS.1943-555X.0000291
  10. Jiang, W., Xie, Y., Wu, J., Guo, J., and Long, G. (2021), Identifying Bonding Interface Flaws in CRTS III type Ballastless Track Structure Using the Impact-Echo Method, Engineering Structures, 227(15), 111429. DOI: 10.1016/j.engstruct.2020.111429
  11. Kee, S.-H., Oh, T., Popovics, J. S., Arndt, R. W., and Zhu, J., (2012), Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography, ASCE Journal of Journal of Bridge Engineering, 17(6), 928-939. DOI: 10.1061/(ASCE)BE. 1943-5592.0000350
  12. Khan, M., and Ali, M. (2019), Improvement in concrete behavior with fly ash, Silica-Fume and Coconut Fibres, 203(10), 174-187. DOI: 10.1016/j.conbuildmat.2019.01.103
  13. Kim, J.-S., Lee, C. J., and Shin, S. W., (2011), Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(3), 171-177 (in Korean).
  14. Korean Standard Association, (2022), Korean Standard for Compressive STrength of Concrete: KS F 2405, Seoul, South Korea.
  15. Lam, L., Wong, Y.L, and Poon, C.S. (1998), Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete, Cement and Concrete Research, 28(2), 271-283. DOI: 10.1016/S0008-8846(97)00269-X
  16. Lee, C., Kee, S., Kang, J., Choi, B., and Lee, J. (2020), Interpretation of Impact-echo testing data from a fire-damaged reinforced concrete slab using a discrete layered concrete damage model, Sensors, 20(20), 5838. DOI: 10.3390/s20205838
  17. Lee, I., Kwon, S., Park, J., and Oh, T. (2018), The effective near-surface defect identification by dynamic behavior associated with both impact-echo and flexural modes for concrete structures, KSCE Journal of Civil Engineering, 22(2), 747-754. DOI: 10.1007/s12205-017-1433-9
  18. Lee, S.-H., Kim, S. J., Endo, T., and Sagara, Y., (2011), Probe of Unfilled Sheath of Prestressed-Concrete Girder Bridge Using Impact-Echo Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 112-119 (in Korean).
  19. Liang, M., and Su, P. (2001), Detection of the corrosion damage of rebar in concrete using Impact-echo method, Cement and Concrete Research, 31(10), 1427-1436. DOI: 10.1016/S0008-8846(01)00569-5
  20. Nowotarski, P., Dubas, S., and Milwicz, R. (2017), Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing, IOP Conference Series: Materials Science and Engineering, 245(3), 232098. DOI: 10.1088/1757-899X/245/3/032098
  21. Oh, B. D., Choi, H., Song, H. J., Kim, J. D., Park C. Y., and Kim, Y. S. (2020), Detection of Defect Inside Duct Using Recurrent Neural Network, Sensors and Materials, 32(1), 171-182. DOI: 10.18494/ SAM.2020.2578
  22. Razak, N., Senin, S., and Hamid, R. (2015), Detection of sizes and locations air voids in reinforced concrete slab using ground penetrating radar and Impact-Echo methods, Jurnal Teknologi, 74(3), 63-67. DOI: 10.11113/jt.v74.4553
  23. Rickad, L., and Choi, W. (2016), Evaluation of Subsurface Damage in Concrete Deck Joints Using Impact Echo Method, Advances in Materials Science and Engineering, 8230398. DOI: 10.1155/2016/ 8230398
  24. Sano, S., Mizobuchi, T., Shimbo, H., Ozeki, T., and Nojima, J. (2022), Computational Modelling of Concrete and Concrete Structures, CRC Press, London, 148-153. DOI: 10.1201/9781003316404
  25. Zaki, A., Chai, H. K., Aggelis, D. G., and Alver, N. (2015), Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique, Sensors, 15, 19069-19101. DOI: 10.3390/s150819069
  26. Zhang, J. K., Yan, W., and Cui, D. M. (2016), Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines, Sensors, 16, 1-17. DOI: 10.3390/s16040447