• Title/Summary/Keyword: 시공조건

Search Result 1,432, Processing Time 0.022 seconds

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사 사용 고강도 콘크리트의 물성에 관한 실험적 연구)

  • 정영수;배수호;박종협
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.219-229
    • /
    • 1996
  • Recent construction activity of infrastructures has been booming and accelerating to incur shortage of river sand for concrete works. Thus, sea sand has been excessively used instead of river sa.nd, that directly causes to decrease the quality and the durability of concrete, and then might lead to the collapse of concrete structures. The purpose of this experimental research is not only to develop high-strength concrete using sea sand, but also to investigate mechanical properties of high-strength concrete, such as elastic moduli, compressive strength and etc, which could be used for important design data of concrete structures. Rational analytic formula for elastic moduli have been proposed together with those for the splitting tensile strength and the flexural strength, which are to be predicted from compressive strength of concrete cylinder. Optimum water-cement and water-binder ratio have been experimentally obtained so as to develop high compressive strength with and without using silica fume as a admixture for concrete. It is noted that experimental elastic moduli for high strength concrete above aCk=330kgf /cm2 are less than those by the Code. Appropriate amount of concrete mixture has been experimentally investigated so as to develop maximum compressive, flexural and splitting tensile strength.

A study on the state of the art on the construction and the new technology of the underground structure(underpass, underground passageways) (지하구조물(지하차도, 지하통로)건설 현황 및 관련 신기술 개발동향 연구)

  • Kim, Hyung-Tae;Han, Man-Yop;Son, Yeun-Jin;Han, Rok-Hee;Jeong, Ji-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.891-894
    • /
    • 2008
  • This study was performed to investigate how to design, where to construct, why to degrade, what plan to use systematically the underground structures such as underpass, underground passageways. About 50% of the underground structures are located on Seoul, Kyungi-Do. In design of the underground structures such as underpass, underground passageways, the required conditions are defined. And also in construction stage, the conditions of soil, required structure depth, site characteristics, reasonable construction method, are investigated. In the selection of details for underground structure, the items mainly considered, are the wall and column type, the sidewalk type, anchoring-system type, the water-proofing method, entranc shape. The reason and the adequate measures for the degradation of concrete structure are also investigated. The initial cracking properties due to the thermal characteristic are considered. The state of the art report on the new technologies are reviewed. The recent project for the systematically application to the underground structures is reviewed.

  • PDF

A Study on the Theory and its Case Study of Production Design - Focused on the Japanese Construction Projects - (생산설계의 이론과 적용 사례연구 -일본의 건축공사 프로젝트를 대상으로-)

  • Kim, Jin-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.5 s.27
    • /
    • pp.89-101
    • /
    • 2005
  • The early phase of construction projects, communication among the related participants has great influence on the further transaction of the projects. However, important decision making are made by the experience of the field managers in practice without the method for systematic analysis. For example, in building construction project, selection process for construction method has been executed by decision making of some architects dependent on their experience. As a result, there have been frequent construction method alterations during the construction process and delay of duration, addition of cost, etc have followed accordingly. The main reasons of such a mal-functional transaction are due to the absent of the reasonal procedure of decision making reflecting the characteristics of construction project. Therefore, there is a need for an supporting tool and production design for the selection of rational construction method. The objective of this study is to propose production design process and decision making model in relation to various influent factors at the early phase of construction projects. To achieve these objectives, this study 1)analyzes the prior theory about production design, 2)we have studied about selection process for optimal construction method through constraint analysis in structural works, 3)performs a case study to embody the problems of the production design, and 4)proposes a cooperative committee model for supporting production design by analyzing the results of case study and interviewing experts. It is anticipated that the effective tool of proposed model would be able to improve communication among the related participants and systematically accumulate data that might be used in similar construction projects.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Studies of application of artificial ground freezing for a subsea tunnel under high water pressure - focused on case histories - (고수압 해저터널 건설을 위한 동결공법 적용성에 관한 연구 - 사례를 중심으로 -)

  • Son, Young-Jin;Lee, Kyu-Won;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.431-443
    • /
    • 2014
  • In this paper case studies of artificial ground freezing, which have not been applied in Korea, have been investigated for the water cut-off in a subsea tunnel under high water pressure and the most commonly used cooling mediums of brine and liquid nitrogen are examined. Since sea water with pressure has the lower freezing point than pure water, the lower temperature cooling medium is required in the application of subsea tunnel. Also, the cooling medium must have refrigeration safety and is able to reduce executing time. Brine freezing system can reuse cooling medium and is safer than liquid nitrogen freezing. But it takes more time to freeze ground and needs complex circulation plants. On the other hand, liquid nitrogen freezing system can't recycle cooling medium and may cause breathing problems or asphyxiation through oxygen deficiency. But, freezing with liquid nitrogen is fast and requires simple refrigeration equipment. Principal elements of design for ground freezing in subsea tunnel have been extracted and these elements are needed further research.

Effect of widening excavation in divergence section of a double-deck tunnel on its stability (복층터널 분기구 확폭구간 굴착에 따른 안정성 영향)

  • La, You-Sung;Kim, Yunhee;Lee, Kangil;Kim, Yongseong;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.435-450
    • /
    • 2020
  • The divergence section of a double-deck tunnel can be divided into a 'widening pre-divergence section', a large cross-section with a cap shape and a 'post-divergence section' where the separation between the main and the branch tunnel is made. Since the cross-section of the widening pre-divergence section is considerably larger than that of the post-divergence section, the influence of excavation due to the different sizes and shapes in the cross-section should be considered in the examination of the tunnel stability. In this study, the effect of the preceding excavation, that is the excavation of the widening pre-divergence section, on excavation stability of the post-divergence section was examined by varying the excavation methods and bench lengths through 3D finite element analysis. The results showed that although the effects of the excavation methods and the bench lengths are not significant on the variation of principal stresses, the preceding excavation causes a relatively large variation on the stresses which may have an impact on the stability of the post-divergence section from the comparison of Stress-Strength Ratio (SSR) between the cases with and without the consideration of the preceding excavation effect by 2D finite element analysis.

Analysis of Sheath Temperatures and Load Currents Dependent on Conductor Temperatures in Live 6kV CV Cables Operating at a Power Station (발전소에서 운전 중인 활선 6 kV CV 단심 cable의 도체온도에 따른 피복 표면온도 및 부하전류 특성 분석)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • The only method used in the power stations in order to deliver generated electric power is 6 kV XLPE (or CV) single core cables. Among many kinds of accidents happening in the power stations, the outbreak of fire due to the deterioration of live cables causes enormous socioeconomic losses. From the installation of the cables, the management and diagnose should be thoroughly made. Even though it differs depending on the installations and usage conditions, the cross-sectional area of cables is in shortage. The excessive allowable temperature caused from the current causes the deterioration of cables. In order to prevent an unexpected breakdown of live cables, we have invented a device to monitor and diagnose the status of cables. We have installed our device in the Korea Western Power Co., Ltd.. In this paper, we present our research results in situ that we have obtained by measuring the temperature of sheath, changing with the surrounding circumstances, especially ambient temperatures. We also show our study results of characteristics for temperature of sheath surface and load current at the ambient temperatures of $40^{\circ}C-10^{\circ}C$.

The Influence of Pre-compression on the Shear Characteristics of Cohesive Soil (선행압축(先行壓縮)이 점성토(粘性土)의 전단특성(剪斷特性)에 미치는 영향(影響))

  • Kang, Yea Mook;Park, Heon Young
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.277-291
    • /
    • 1983
  • In order to investigate the shear characteristics of earth structure after construction. Four sample soils with different gradation were selected and compacted under the optimum moisture content and the maximum dry density. And the direct shear test and the triaxial compression test were performed with those sample soils under various pre-compression loads. The results were summarized as follows; 1. With the increase of the percent passing of No. 200 sieve, the cohesion of soil increased regularly and the internal friction angle of soil decreased with slow ratio. 2. The pre-compression increased the shear strength of compacted cohesive soil. The increase of cohesion was very apparent but the internal friction angle didn't show such regular tendency. 3. With the increase of pre-compression load, the slope of stress-strain curve showed steep at the early stage of horizontal strain. The vertical strain was small at the compression stage and big at the expansion stage. 4. When the vertical stress of shear test with increase in the horizontal strain was small, stress ratio(shear stress vs. vertical stress) of sample showed the largest value and the slope of stress ratio curve showed also steep. 5. When the sample was had the same condition, the cohesion of soil showed bigger value in the triaxial compression test and the internal friction angle of soil showed bigger value in the direct shear test.

  • PDF

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.