• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.031 seconds

Proposing a Technique for Regional Flood Frequency Analysis: Bayesian-GLS Regression (국내 지역 홍수빈도해석을 위한 기법 제안: Bayesian-GLS 회귀)

  • Jeong, Dae-Il;Stedinger, Jery R.;Kim, Young-Oh;Sung, Jang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.241-245
    • /
    • 2007
  • 국내 홍수빈도 분포의 매개변수 추정에서 지점추정(at-site estimate) 방법은 유량 자료의 부족으로 발생하는 표본오차(sampling error)가 크기 때문에 충분한 유량 자료를 보유한 지점에 한하여 제한적으로 사용되고 있다. 대안으로 동질성을 가진 유역의 유량 자료를 모아 지역 매개변수를 추정하는 지수홍수법(Index Flood Method)이 제안되기도 하였으나, 이질성이 큰 우리나라의 유역특성 때문에 적용이 쉽지 않다. Stedinger와 Tasker가 1986년 제안한 GLS(Generalized Least Square) 기법은 유역을 동질지역으로 구분할 필요가 없으며 지점들간의 상관관계와 이분산성을 고려할 수 있어, 국내 홍수빈도 해석을 위해서 꼭 도입해야할 기법으로 생각된다. 본 연구에서는 기존의 GLS 기법의 단점을 보완한 Bayesian-GLS 기법을 이용하여, 국내 대유역에 골고루 위치하며 댐의 영향을 받지 않는 31개 지점의 연최대 일유량 시계열의 L-변동계수(L-moment coefficient variation)와 L-왜도계수(L-moment coefficient skewness)를 추정할 수 있는 회귀모형을 제안하였다. 위 회귀모형을 구성하기 위한 유역특성으로는 유역면적, 유역경사, 유역평균강우 등을 사용하였다. Bayesian-GLS (B-GLS) 적용 결과를 OLS(Ordinary Least Square) 및 Bayesian-GLS 기법에서 지점간의 상관관계를 고려하지 않는 Bayesian-WLS(Weighted Least Square)와 비교 평가하여 그 우수성을 입증하였다. 따라서 본 연구에서 제안된 B-GLS에 의한 지역회귀모형은 국내의 미계측유역이나 또는 관측 길이가 짧은 계측유역의 홍수빈도분석을 위해 매우 유용할 것으로 기대된다.년 홍수 피해가 발생하고 있지만, 다른 한편 인구밀도가 높고 1인당 가용 수자원이 상대적으로 적기 때문에 국지적 물 부족 문제를 경험하고 있다. 최근 국제적으로도 농업용수의 물 낭비 최소화와 절약 노력 및 타 분야 물 수요 증대에 대한 대응 능력 제고가 매우 중요한 과제로 부각되고 있다. 2006년 3월 멕시코에서 개최된 제4차 세계 물 포럼에서 국제 강 네트워크는 "세계 물 위기의 주범은 농경지", "농민들은 모든 물 위기 논의에서 핵심"이라고 주장하고, 전 프랑스 총리 미셀 로카르는 "...관개시설에 큰 문제점이 있고 덜 조방적 농업을 하도록 농민들을 설득해야 한다. 이는 전체 농경법을 바꾸는 문제..."(segye.com, 2006. 3. 19)라고 주장하는 등 세계 물 문제 해결을 위해서는 농업용수의 효율적 이용 관리가 중요함을 강조하였다. 본 연구는 이러한 국내외 여건 및 정책 환경 변화에 적극적으로 대처하고 물 분쟁에 따른 갈등해소 전략 수립과 효율적인 물 배분 및 이용을 위한 기초연구로서 농업용수 수리권과 관련된 법 및 제도를 분석하였다.. 삼요소의 시용 시험결과 그 적량은 10a당 질소 10kg, 인산 5kg, 및 가리 6kg 정도였으며 질소는 8kg 이상의 경우에는 분시할수록 비효가 높았으며 특히 벼의 후기 중점시비에 의하여 1수영화수와 결실율의 증대가 크게 이루어졌다. 3. 파종기와 파종량에 관한 시험결과는 공시품종선단의 파종적기는 4월 25일부터 5월 10일경까지 인데 이 기간중 일찍 파종하는 경우에 파종적량은 10a당 약 8${\ell}$이고 늦은 경우에는 12${\ell}$ 정도였다. 여기서 늦게 파종한 경우 감수의 가장 큰 원인은 1수영화수가 적어지기 때문이었다. 4. 건답직파에 대한 담수상태로 관수를 시작하는 적기는 파종후

  • PDF

Shape Deformation Monitoring for VLBI Antenna Using Close-Range Photogrammetry and Total Least Squares (근접사진측량과 Total Least Squares를 활용한 VLBI 안테나 형상 변형 모니터링 방안 연구)

  • Kim, Hyuk Gil;Yun, Hong Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • In order to maintain the precise positioning accuracy of the VLBI system, the shape deformation found in antenna structure should be monitored. In fact, reduced the antenna gaining of an electromagnetic wave reception from the Quasar has been particularly expected due to the shape deformation of main reflector in VLBI antenna. Therefore, the importance of shape deformation monitoring for the main reflector has been significantly increased. The main reflector has come out as the high potential for deformation in the VLBI structure. The fact has led us to investigate the monitoring system for the main reflector based on the efficient algorithm in accordance with the close-range photogrammetry, which of expecting to be utilized as the continuous and automated monitoring system for the structure deformation in the near future. Ten fitting lines were estimated with the TLS for feature points of distributed in all directions from the main reflector. The resultant intersection point of estimated fitting lines was calculated by using the nearest point calculation algorithm, based on those non-intersection lines. Following to the intuitive basis for the time series analysis, the results was able to provide the calculation of numerical variation in the intersection point, which is represented in 3-axis,; that we are expecting to open the way for predicting a deformation rate as well as deformation direction

Online Signature Verification by Visualization of Dynamic Characteristics using New Pattern Transform Technique (동적 특성의 시각화를 수행하는 새로운 패턴변환 기법에 의한 온라인 서명인식 기술)

  • Chi Suyoung;Lee Jaeyeon;Oh Weongeun;Kim Changhun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.663-673
    • /
    • 2005
  • An analysis model for the dynamics information of two-dimensional time-series patterns is described. In the proposed model, two novel transforms that visualize the dynamic characteristics are proposed. The first transform, referred to as speed equalization, reproduces a time-series pattern assuming a constant linear velocity to effectively model the temporal characteristics of the signing process. The second transform, referred to as velocity transform, maps the signal onto a horizontal vs. vertical velocity plane where the variation oi the velocities over time is represented as a visible shape. With the transforms, the dynamic characteristics in the original signing process are reflected in the shape of the transformed patterns. An analysis in the context of these shapes then naturally results in an effective analysis of the dynamic characteristics. The proposed transform technique is applied to an online signature verification problem for evaluation. Experimenting on a large signature database, the performance evaluated in EER(Equal Error Rate) was improved to 1.17$\%$ compared to 1.93$\%$ of the traditional signature verification algorithm in which no transformed patterns are utilized. In the case of skilled forgery experiments, the improvement was more outstanding; it was demonstrated that the parameter set extracted from the transformed patterns was more discriminative in rejecting forgeries

Establishment of Incheon Inundation Production System in association with SWMM-2DIS (SWMM-2DIS를 연계한 인천시 침수심 생산체계 구축)

  • Shim, Jae Bum;Won, Chang Yeon;Hwang, Soo Deok;Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.387-387
    • /
    • 2019
  • 우리나라는 최근 10년간 자연재난 중 호우로 인해 인명피해 약 120명, 재산피해 약 1조 4천억원을 기록하였으며, 또한 기후변화로 인해 강한 국지성 집중호우의 발생빈도가 높아질 것으로 예상됨에 따라 호우에 의한 침수피해가 증가될 것으로 예상된다. 특히 본 연구 대상지역인 인천시의 경우 도시화로 인해 인구밀도 및 불투수지역이 증가함에 따라 침수피해가 대형화되고 있는 실정이다. 이에 본 연구에서는 인천시와 같은 도심지역에서의 침수발생을 사전에 예측하고 침수발생에 대한 대비 대응을 위해 하수관망 해석을 위한 SWMM 모델과 침수해석을 위한 2DIS 모델을 연계하여 인천시 침수심 생산체계를 구축하고자 한다. 본 연구에 적용한 침수심 생산과정은 크게 강우자료 생산, 유역 및 하수관망 해석, 침수 해석 등 총 3단계 과정으로 구성된다. 강우자료 생산과정에서는 유역 및 하수관망 해석과 침수 해석을 위한 10분 단위 유역평균 강우량자료를 생산한다. 유역 및 하수관망 해석과정에서는 지형자료 및 강우자료를 이용하여 SWMM 모델을 통해 맨홀에서의 월류량 자료를 생산한다. 마지막으로 침수해석과정에서는 지형자료와 함께 앞서 두 과정을 통해 생산된 강우 및 맨홀 월류량 자료를 입력자료로 하여 2DIS 모델을 통해 10분 단위의 시계열 침수심 정보 및 격자별 최대 침수심정보를 생산한다. 본 연구에서의 공간해상도는 도심지역의 도로단위 고해상도 침수심 정보 생산을 위해 6m 단위로 하였으며, 시간해상도는 단시간에 발생하는 도심지역의 침수특성 반영을 위해 10분으로 하였다. 또한, 침수발생 시 발생한 강우의 지표흐름 영향을 반영하기 위해 빗물받이효율 변화에 다른 침수심을 분석하였다. 본 연구를 통해 도출된 모의 침수심 결과를 실제 침수피해사례 및 풍수해저감종합계획 결과와 비교하였으며, 다수 지역에서 실제 침수발생지역과 동일하게 침수가 발생한 것으로 나타났다. 또한, 전체적인 침수 양상이 유사하게 발생함을 확인하였다. 향후 관측자료를 이용한 하수관망 및 침수해석 모델의 최적화, 하천유량 예측을 통한 하류 기점수위의 반영 등을 통해 정확도를 개선할 수 있을 것으로 판단되며, 이를 통해 인천시 침수발생을 사전에 예측하여 침수피해에 대비 및 대응과 침수피해 발생 시 정확하고 상세한 원인 분석 및 예측이 가능할 것으로 기대된다.

  • PDF

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

A Study of Rent Determinants of Small and Medium-Sized Office Buildings in Seoul Using a Dynamic Panel Model: Focusing on CBD and GBD Comparison (동적패널모형을 활용한 서울시 중소형 오피스 빌딩 임대료 결정 요인 연구: CBD(도심권)와 GBD(강남권) 비교를 중심으로)

  • NaRa Kim;JinSeok Yu;Jongjin Kim
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.47-62
    • /
    • 2023
  • Using the dynamic panel model, this study investigates rent determinants for small and medium-sized office buildings in Korea's CBD and Gangnam areas, key business districts. The results reveal that rents for small and medium-sized office buildings in CBD and Gangnam areas are influenced by macroeconomic fluctuations and characteristics of buildings and locations, suggesting a market with both spatial consumer and investment goods attributes. There are several investment implications as follows. First, even if the location in the CBD area is advantageous, the practical limitations in renovating aging small and medium-sized office buildings must be taken into account when investing. Second, parking conditions are a key factor influencing rent prices in CBD areas, so evaluating the parking facilities and improvement potential of small and medium-sized office buildings is essential for investors. Finally, due to the high sensitivity of Gangnam's small and medium-sized office market to macroeconomic trends, it's vital to prioritize monetary policy shifts as a key factor in investment decisions.

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

A Study on the Hydraulic Factors of Groundwater Level Fluctuation by Region in Jeju Island (제주도 지역별 지하수위 변동 요인에 대한 고찰)

  • Jeong, Jiho;Park, Jaesung;Koh, Eun-hee;Park, Won-bae;Jeong, Jina
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • This study evaluated the hydraulic factors contributing to the decreasing groundwater levels across Jeju island. Time-series data for groundwater level, precipitation, and groundwater usage and information on land use were acquired, and the correlations among them were analyzed to evaluate the causes of the decreasing groundwater. The effects of precipitation and groundwater usage on the fluctuations of groundwater level were quantified using response surface analysis and sensitivity analysis, and methods for groundwater quantity management by region were proposed. The results showed that the rate of groundwater decrease in the western region was larger than that in the eastern region. For the eastern region, the influence of precipitation was large and the rate of decrease in the groundwater level was relatively small. The geological formation of this part of the island and continuous seawater intrusion suggest that although the absolute amount of groundwater extracted for use was large, the decrease in the groundwater level was not seen to be great due to an increase in pressure by seawater intrusion. Overall, precipitation and groundwater usage had the greatest effect on the amount of groundwater in the western region, and thus their data would be most useful for informing groundwater management, whereas other factors (e.g., sea level and the location of the freshwater-seawater transition zone) must be considered when understanding Jeju's eastern region. As the characteristics of groundwater level fluctuations in the eastern and western regions are distinct, an optimal management plan for each region should be proposed to ensure the efficient management of groundwater quantity.