• Title/Summary/Keyword: 시계열 변화

Search Result 1,018, Processing Time 0.031 seconds

Analysis of long-term climate variability by extending hydrologic time series (수문 시계열 확장을 통한 장기 기후 변동성 분석)

  • Kim, Taereem;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.308-308
    • /
    • 2019
  • 지구상 해양, 대기 및 대륙 상호간의 연속적인 물의 거동을 나타내는 물의 순환의 주요 과정 중 하나인 유량 자료는 경년부터 수십년간의 다양한 기상학적 변동성을 내포하며 해당 지역의 수문기상학적 특성을 반영한다. 이러한 기상학적 변동성 중에서 비교적 긴 시간 주기를 나타내는 저주파 진동은 전지구적 기후변화의 장기적 영향을 나타내며 해수면 상승, 홍수 또는 가뭄과 같은 극한 수문사상을 나타내는 매우 주요한 지표로 활용되고 있지만 관측된 수문 시계열의 짧은 자료길이로 인하여 통계적 분석의 신뢰성에 한계를 보여왔다. 따라서 과거 수문 시계열의 확장으로 인하여 부재의 영역으로 남아있던 자료 기간의 한계가 보완되면 보다 정확하고 신뢰도 있는 분석이 가능할 것이다. 나무나이테를 활용한 고기후 복원 등의 연구가 증가하고 있지만 공학 분야에서 이를 실제로 활용한 연구는 아직 미비하다. 따라서 본 연구에서는 과거 기후의 정보를 바탕으로 복원된 수문 시계열을 활용하여 수문 시계열에 내재된 장기 기후 변동성을 통계적으로 분석하기 위한 문헌들을 조사하고, 장기적인 시간 흐름에 내재된 잠재적인 경향 및 변동성을 통계적 분석을 파악하고자 한다. 이를 위해 주어진 수문 시계열에 내재된 저주파 신호을 추출하기 위한 경험적 모드분해법을 활용하여 수문 자료에 내재된 장기 변동성을 추출하였으며, 산업화 이전부터 연장된 수문 시계열의 공학적 활용성을 분석하고자 한다.

  • PDF

An Analysis of the street structure and the Morphological Change using Space Syntax in Kangnam, Seoul (공간구문론을 활용한 가로체계와 공간변화 분석 - 서울 강남구를 사례로)

  • Kim, Hye-Young;Joo, Yong-Jin;Jun, Chul-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.69-70
    • /
    • 2010
  • 우리나라의 경우 시계열적인 토지 이용의 변화특성에 대한 경향 및 유형의 분석과 예측에 관련한 연구는 그 중요성에도 불구하고 미흡한 실정이다. 따라서 본 연구는 서울시 강남구의 구축한 시계열 데이터를 바탕으로 가로체계와 토지이용 자료를 사용하여 강남구 공간구조의 시계열 공간구조변화의 패턴분석을 목적으로 한다. 또한 토지이용 변화과정을 함께 비교분석한다. 강남구는 70년대 초부터 개발로 인해 많이 변화해온 지역이다. 이를 고려하여 60,70,80,90년의 시계열별 공간구문론을 도입하여 축선도(Axial map)를 통해 정량적 분석을 한다. 향후 도로의 접근성 측면에서의 토지이용변화 예측모델 방법론과 연계가 이루어진다면 공간변화를 효과적으로 추정할 수 있을 것이라 기대한다.

  • PDF

Forecasting the Time-Series Data Converged on Time PLOT and Moving Average (Time PLOT과 이동평균 융합 시계열 데이터 예측)

  • Lee, Jun-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.161-167
    • /
    • 2015
  • It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.

Model Parameter Based Fault Detection for Time-series Data (시계열을 따르는 공정데이터의 모델 모수기반 이상탐지)

  • Park, Si-Jeo;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.67-79
    • /
    • 2011
  • The statistical process control (SPC) assumes that observations follow the particular statistical distribution and they are independent to each other. However, the time-series data do not always follow the particular distribution, and most of cases are autocorrelated, therefore, it has limit to adopt the general SPC in tim series process. In this study, we propose a MPBC (Model Parameter Based Control-chart) method for fault detection in time-series processes. The MPBC builds up the process as a time-series model, and it can determine the faults by detecting changes parameters in the model. The process we analyze in the study assumes that the data follow the ARMA (p,q) model. The MPBC estimates model parameters using RLS (Recursive Least Square), and $K^2$-control chart is used for detecting out-of control process. The results of simulations support the idea that our proposed method performs better in time-series process.

Bootstrap estimation of long-run variance under strong dependence (장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산 추정)

  • Baek, Changryong;Kwon, Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.449-462
    • /
    • 2016
  • This paper considers a long-run variance estimation using a block bootstrap method under strong dependence also known as long range dependence. We extend currently available methods in two ways. First, it extends bootstrap methods under short range dependence to long range dependence. Second, to accommodate the observation that strong dependence may come from deterministic trend plus noise models, we propose to utilize residuals obtained from the nonparametric kernel estimation with the bimodal kernel. The simulation study shows that our method works well; in addition, a data illustration is presented for practitioners.

Implementation of an Open Prediction Engine for Time-Series Data Using Levinson-Durbin Algorithm and Newton-Raphson Method (Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한 개방형 시계열 데이터 예측엔진 구현에 관한 연구)

  • Koo, Jin-Mo;Hong, Tae-Hwa;Kim, Hag-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2968-2970
    • /
    • 2000
  • 시계열(time series)이란 한 사상 또는 여러 사상에 대하여 시간의 흐름에 따라 일정한 간격으로 이들을 관측하여 기록한 자료를 말한다. 이러한 시계열은 어떠한 경제현상이나 자연현상에 관한 시간적 변화를 나타내는 역사적 계열(historical series)이므로 어느 한 시점에서 관측된 시계열자료는 그 이전까지의 자료들에 주로 의존하게 된다. 따라서 시계열분석을 통한 예측에서는 과거의 자료들을 분석하여 법칙성을 발견해서 이를 모형화하여 추정하고. 이 추정된 모형을 사용하여 미래에 관측될 값들을 예측하게 된다. 본 연구에서는 ARMA (p, q)모형 (autoregressive moving-average model)을 이용하여 시계열 데이터를 분석하며 계수의 추정에는 Levinson-Durbin 알고리듬과 Newton-Raphson Method를 이용한다.

  • PDF

주가시계열에 대한 확률미분방정식(確率微分方程式)의 모수(母數) 추정(推定)과 자본시장의 운동법칙(運動法則)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.15 no.2
    • /
    • pp.279-337
    • /
    • 1998
  • 이 논문에서는 주가가 확률과정, 즉 확률미분방정식에 의하여 생성되는가를 검정하고 주가의 운동법칙을 규명한다. 일별종합주가지수가 양수의 완전시계열상관을 갖고 있으며, 더욱이 3년 정도의 시차까지 의미있는 시계열상관을 갖고 있음이 발견되었다. 수익률과 가격변화의 시계열상관도 존재하고 시계열은 정상성(定常性)을 갖고 있다. 마팅게일에 의하여 주가가 생성되고있지 않음이 밝혀졌다. 한국증권거래소에서 계산하고 있는 일별 종합주가지수를 포함한 41개 산업별 지수를 사용하여 자본시장의 운동법칙을 규명하기 위하여 가장 많이 이용하고 있는 세개의 확률미분방정식을 검정하였다. 각 주가지수들이 온스타인 울렌벡 브라운 운동과정과 평균회귀과정을 따르지 않고 있다는 것이 발견되었다. 그러나 주가가 편류를 갖는 일반 기하 브라운 운동과정에 의하여 생성되고 있음이 검정을 통하여 확인되었다. 평균회귀과정에 의하여 주가가 생성되지 않는다는 발견은 의외라 할 수 있다. 주가가 온스타인 울렌벡 과정을 따르지 않는다는 것은 주가가 제 1계 정상적 자기회귀과정이 아니라는 것을 의미한다. 일별종합주가지수는 제 4계 자기회귀과정에 의하여 생성된다. 가격변화와 수익률의 생성함수는 제 4계 자기회귀과정이다. 종합주가지수의 제 1계 시계열상관계수는 1이다. 상당히 큰 시차를 갖을 때까지 시계열상관이 대략적으로 1을 유지하고 있다. 따라서 지수가 마팅게일을 따르고 있지 않다. 이 점은 가격변화와 수익률에 있어서도 유사하다. 가격변화, 수익률, 대수수익률의 제 1계 시계열상관이 0.1로 유의적이다. 따라서 수익도 마팅게일 과정을 따르고 있지 않다. 증권가격은 세 번에 걸쳐 구조의 번화가 발생하였다. 구조의 변화가 발생할 때마다 평균가격이 상승하였다. 이와 같은 현상은 장기적 기대가격이 미지일 가능성이 배제되지 않는다. 단기적 기대 주가가 알려진 반면 장기적 기대 주가가 미지라면 평균회귀과정은 장기적 기대주가로 회귀하고 있는 과정이므로 장기기대 주가의 미지성이 평균회귀 과정의 기각을 유도하게 된다. 우리나라의 투자자들은 무위험자산과 위험을 동시에 고려하여 투자활동을 전개하고 있음이 발견되었다. 선형의 효용함수를 갖는 위험중립적 태도의 투자자가 아니다. 위험기피형 효용함수 아래에서 투자활동을 수행하고 있는 합리적 투자자들이라 할 수 있다. 뿐 만 아니라 자신의 평생에 걸친 소비를 소비가 이루어지는 각 기마다 가급적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.

  • PDF

시계열(時系列) 자료(資料)와 재무관리(財務管理) 이론(理論)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 1994
  • 재무관리의 모든 영역을 완벽하게 이해하기 위하여는 기업재무관리와 투자론을 비롯하여 금융산업 전체에 대한 연역적 방법에 의한 이론의 정립과 실증분석을 통한 이론의 정립이 관건이라 할 수 있다. 이 논문에서는 실증 분석을 수행함에 있어 우리나라에서 활발하게 논의가 진행되지 않는 시계열분석의 영역을 살펴보았다. 그것은 이와 같은 분야를 천착해 봄으로써 이 분야가 재무관리에 대한 통찰력과 현실 적합성의 판단력을 배양하는데 큰 공헌을 할 수 있으리라는 믿음 때문이다. 이 논의를 통하여 시계열 분석에 대한 활발한 연구가 진행되기를 기대하고 있다. 시계열 확률과정에 대한 재무관리이론을 연역적으로 도출하기는 용이하지 않다. 시계열 분석에서 제시되는 여러 방법론을 재무관리의 시계열에 적용하여 그 시계열의 성질과 특성을 파악하면 그것이 그대로 현실에 적용될 수 있을 것이다. 이러한 연구의 결과는 어떤 형태로든 연역적 방법에 의한 이론의 정립에 깊은 영향을 미칠 것이다. 뿐만 아니라 연속시간의 틀과 이시적(異時的) 양태하(樣態下)에서 많은 재무관리 모형들이 개발되고 있으며, 동태적 상황을 해명하는 의도에서 이 모형들이 연구되고 있는 만큼 시계열 분석은 이 분야에 직접적으로 이용될 수 있다. 시계열 분석에서 제시된 많은 모형들이 재무관리의 실증적 현상을 설명하는데 효과적으로 활용될 수 있다. 뿐만 아니라 현재 연역적으로 개발된 모형들이 설명할 수 없는 부분을 시계열 분석이 직접적으로 해명할 수 있는 능력을 확보하고 있음도 제시되었다. 증권의 현가모형(現價模型), 이자율의 기간구조, 효율적 시장가설도 주가의 변동성 등은 시계열 분석의 다양한 기법을 사용하여 검증되어야 하며, 이 경우 특히 분산의 추정방법을 여러 측면에서 개발해 야 할 것이다. 시계열 분석에서는 두개 또는 그 이상의 기법을 하나로 통합하는 방법이 있을 수 있다. ARIMA와 ARCH가 결합되는 것을 본 바 있다. 구조적(構造的) 변화(變化)(structural change)모형(模型)과 ARCH의 결합도 가능하다. 다른 분야로서는 변동성(變動性)에 관한 연구이다. 변동성(變動性)에 관한 연구는 variance bounds test에 한정된 감이 있으나 정보와 변동성의 관계가 중요시되고 있는 만큼 정보집합과 시계열 분석 기법의 결합은 변동성의 연구에 새로운 지평을 열어줄 것으로 보인다. 따라서 정보집합의 형성에 따라 새로운 추정방법이 개발될 여지가 풍부하다.

  • PDF

Prospects for changing in hydrological cycle components in North Korea basins by RCP8.5 climate change scenario (RCP8.5 기후변화시나리오에 따른 북한지역의 수문순환요소 변화 전망)

  • Jeung, Se Jin;Kwon, Bo Ra;Kim, Tae Hyung;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.30-30
    • /
    • 2017
  • 한반도의 기후변화는 전 세계 평균보다도 빠르게 진행되고 있다. 최근 빈발하고 있는 태풍 및 극한 강우, 폭설과 한파, 온난화 현상 등이 그 예이다. 특히 북한지역은 오랜 식량난과 에너지난으로 산림생태계가 훼손되어 홍수 및 이수와 같은 기후변화 관련 자연재해에 매우 취약하다. 이렇게 예상되는 대규모 자연재해를 대비하고 기후변화에 효율적으로 대처하기 위해서는 체계적이고 과학적인 기상 및 기후 예측 정보의 활용이 매우 중요하다. 하지만 북한지역은 우리가 수문자료를 구하기가 힘들고, 직접 측정을 할 수 없으므로 수문자료의 수집에 한계가 있기 때문에 기후변화관련 수문연구에 한계점이 있다. 따라서 본 논문에서는 WMO에서 제공하고 있는 북한의 27개 기상관측소의 강수량, 기온자료와 기상청의 RCP8.5기후변화시나리오를 제공 받아 각 관측소별 미래 잠재증발산량을 산정하였다. 또한 lumped conceptual model인 WASMOD 모형을 이용하여 북한의 대표유역(금야강, 대동강, 두만강, 압록강, 예성강, 임진강, 장연남대천)에 적용하여 부족한 수문시계열자료를 산정하였다. 이렇게 산정된 북한의 미래 수문순환요소의 시계열자료를 이용하여 통계분석, 변화점분석, 유황분석등 시계열 분석 등을 통해 RCP8.5기후변화시나리오 기반의 기후변화가 북한지역의 수문순환과정에 미치는 영향을 분석하고, 이를 통해 유역규모의 수자원에 미치는 영향을 전망하였다.

  • PDF