• Title/Summary/Keyword: 시계열분석방법

검색결과 803건 처리시간 0.026초

클라우드 애플리케이션의 성능 모니터링을 위한 시계열 데이터 분석 연구 (A study on time series data analysis for performance monitoring of cloud applications)

  • 홍두표;김동완;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.58-59
    • /
    • 2023
  • 클라우드 애플리케이션의 성능 모니터링 방법에는 클라우드 소프트웨어 스택의 인프라, 플랫폼 및 애플리케이션 계층에서 수집한 시계열 데이터 분석이라는 방법이 존재한다. 클라우드 컴퓨팅 환경에서 운영되는 서비스 간의 런타임 종속성을 분석하는 것은 클라우드 리소스 관리를 수행하기 위해 필요한 단계이다. 본 논문에서는 Bi-LSTM 기법을 활용해 클라우드 애플리케이션의 관계를 분석하고 종속성을 찾아 모니터링 성능을 향상시키는 시스템을 제안한다. 제안하는 시스템은 클라우드 스택의 모든 계층으로부터 시계열 데이터를 수집하여 인공지능 모델을 훈련, 재훈련 및 업데이트 과정을 진행한다. 본 논문에서는 Bi-LSTM 모델을 활용하여 훈련 중에 학습된 성능 메트릭 간의 종속성을 발견한다.

공간구문론을 활용한 가로체계와 공간변화 분석 - 서울 강남구를 사례로 (An Analysis of the street structure and the Morphological Change using Space Syntax in Kangnam, Seoul)

  • 김혜영;주용진;전철민
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2010년도 춘계학술대회
    • /
    • pp.69-70
    • /
    • 2010
  • 우리나라의 경우 시계열적인 토지 이용의 변화특성에 대한 경향 및 유형의 분석과 예측에 관련한 연구는 그 중요성에도 불구하고 미흡한 실정이다. 따라서 본 연구는 서울시 강남구의 구축한 시계열 데이터를 바탕으로 가로체계와 토지이용 자료를 사용하여 강남구 공간구조의 시계열 공간구조변화의 패턴분석을 목적으로 한다. 또한 토지이용 변화과정을 함께 비교분석한다. 강남구는 70년대 초부터 개발로 인해 많이 변화해온 지역이다. 이를 고려하여 60,70,80,90년의 시계열별 공간구문론을 도입하여 축선도(Axial map)를 통해 정량적 분석을 한다. 향후 도로의 접근성 측면에서의 토지이용변화 예측모델 방법론과 연계가 이루어진다면 공간변화를 효과적으로 추정할 수 있을 것이라 기대한다.

  • PDF

ARMA 데이터에 대한 Back-propagation 신경망의 구조 (A Study on Construction of Back-propagation Architecture for ARMA data)

  • 김나영;김희영
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.17-22
    • /
    • 2000
  • 시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.

  • PDF

시계열분석을 위한 주파수 공간상에서의 재표집 기법 (Resampling Methods on Frequency Domains for Time Series)

  • 여인권;윤화형;조신섭
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.121-134
    • /
    • 2006
  • 이 논문에서는 이산코사인변환을 이용하여 시계열자료를 주파수 공간으로 변환시킨 후, 이산코사인변환 계수를 재표집하여 시계열자료에 대한 재표본을 추출하는 방법에 대해 알아본다. 기존 주파수 공간상에서의 붓스트랩 방법은 스펙트럼평균(spectral mean)에 대한 추론을 하기위해 사용되지만 제안하고자 하는 방법은 시간영역상에서의 시계열자료에 얻을 수 있다는 것이 가장 큰 차이점이다. 이 논문에서는 정상시계열의 경우, 이산코사인변환 계수의 통계적 성질을 유도하고 이 성질을 이용하여 붓스트랩하는 과정을 설명한다. 모의 실험을 통해 기존에 사용되고 있는 방법과 성능을 비교하였다.

시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합 (Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory)

  • 이금용
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.277-286
    • /
    • 2002
  • 양자역학 섭동이론과 유전자프로그래밍(GP) 기법을 접목시킴으로써 실세계(Real-world)에서 발생하는 카오스 시계열에 대하여 수학모델을 구축, 예측하기 위한 새로운 알고리즘을 개발하였다. 시계열 분석과 양자역학 파동방정식의 해를 구하는 섭동이론과의 절차적 유사성을 논하고, 이것을 GP로 구현하는 전형적 접근방안을 제시한다. 함수집합(Function Set)으로서 직교함수(Orthogonal Functions)를 이용하고 병렬 집단을 사용하는 GP를 이용하여 원 시계열에 대한 초기 수학모델을 구하고, 원 시계열 데이터로부터 모델의 평가값을 뺀 나머지로 구성되는 잔여 시계열에 대하여 다시 GP를 적용하는 과정을 일정한 종료조건이 충족될 때가지 반복함으로써 실세계 카오스 시계열에 대한 정확성 높은 수학모델을 구축하는데 성공하였다. 타 방법론과의 비교와 향후 해결과제에 대하여도 소개한다.

시계열 예측을 고려한 속성 선택 딥러닝 모델 (Feature Selection Deep Learning Model considering Time Series Prediction)

  • 박광호;;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

신경망을 이용한 시계열 패널자료의 예측 (Prediction for Time Series Panel Data using Neural Network)

  • 김인규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

다변량 비정상 계절형 시계열모형의 예측력 비교 (Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models)

  • 성병찬
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2011
  • 본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.

불규칙변동 분해 시계열분석 기법을 사용한 AADT 추정 (The AADT estimation through time series analysis using irregular factor decomposition method)

  • 이승재;백남철;권희정;최대순;도명식
    • 대한교통학회지
    • /
    • 제19권6호
    • /
    • pp.65-73
    • /
    • 2001
  • 교통량이 시간의 흐름과 관련이 있는 시계열 데이터라는 개념을 기초로 교통량 패턴을 시계열 분석을 사용하여 분해해 보고자 하였다. 교통량 패턴은 추세치(T)와 계절변동(S), 주기변동(C), 그리고 불규칙변동(I)으로 구분할 수 있었는데 본 연구에서는 불규칙변동을 기상요인을 통해 설명하려는 시도를 하였다. 왜냐하면 교통의 주체인 사람들 행태의 특성상 기상의 변화와 관련이 깊다고 판단을 내렸기 때문이었다. 기상요인으로는 일우량, 일조량, 풍속, 주야율 강설량, 기온 등 여러 가지가 있지만 교통량의 변화와 가장 관련이 깊다고 여겨지는 일우량과 최저기온을 이용하였다. 일단 시계열 성분을 분해하고 나면 이를 이용하여 AADT를 추정하게 되는데, 추정의 결과를 비교하기 위해 AADT 추정방법을 두 가지로 구분하였다. 즉, 기상요인을 사용했을 경우와 그렇지 않을 경우로 나누어 결과를 살펴보았다. 추정 결과를 비교하는 척도로는 RMSE와 U-test를 사용하였다. 결과를 보면 불규칙변동요인을 그대로 사용했을 때보다, 기상요인을 결합한 불규칙변동요인을 사용했을 때 더 추정력이 좋았다. 이것은 각 조사지점의 RMSE와 U-test값을 구한 후 그 지점의 AADT로 나누어 준 결과를 보고 알 수 있었다. 이 연구를 통해 우리는 불규칙변동요인 이용방법의 중요성에 대해 한번 더 생각해 보게 된다. 즉 그것을 설명하는 방법에 의해 기존보다 더 나은 모형을 얻을 수도 있다는 결론에 이르게 된다는 것이다.

  • PDF

BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석 (Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm)

  • 최강수;경민수;김수전;김형수
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.163-171
    • /
    • 2009
  • 수문시계열 분석과 예측을 위하여 통상적으로 기존의 선형적인 모형들을 이용하여 왔다. 그러나 최근 자연현상이나 수문시계열의 패턴 그리고 변동성에 비선형구조가 존재하고 있다는 것이 입증되고 있다. 따라서 기존의 선형적인 방법들에 의한 시계열분석이나 예측은 비선형 시스템에 대해서 적절하지 않을 것이다. 최근, 시계열의 비선형성 구조를 판단하기 위해 카오스 이론을 토대로 한 상관적분으로부터 BDS(Brock-Dechert-Scheinkman) 통계 기법이 유도되었다. BDS 통계는 시스템의 비선형구조와 무작위성 구조를 구별하는데 매우 효과적으로 이용되어 오고 있다. 또한 DVS(Deterministic Versus Stochastic) 알고리즘은 카오스와 추계학적 시스템을 구별하고 예측하는데 주로 이용되어 왔다. 그러나 본 연구에서는 DVS 알고리즘에 의해 시계열의 비선형성을 판별할 수 있음을 보이고자 한다. 따라서 본 연구에서는 추계학적 시계열과 수문학적 시계열들의 비선형성을 검사하고자 한다. ARMA 모형과 TAR(Threshold autoregressive) 모형으로부터로 발생시킨 추계학적 시계열, 미국 유타주 GSL 체적자료, 미국 플로리다 주 St. Johns 강 Cocoa 지점의 유출량 자료, 소양강 댐 일 유입량 자료 등의 수문시계열에 대해 비선형성 분석을 수행하고 그 결과를 비교하였다. 분석결과 BDS 통계가 선형 및 비선형 시계열을 구분하는데 매우 강력한 도구임을 보였고, DVS 알고리즘 또한 시계열의 비선형성을 구별하는데 효과적으로 이용될 수 있음을 보였다.