• Title/Summary/Keyword: 시계열분석방법

Search Result 803, Processing Time 0.035 seconds

Time Series Analysis on the Transformation of Commercial districts in Daegu (대구 상업지역의 시계열적 변화특성에 관한 연구)

  • Lee, Ji-Soo;Hong, Won-Hwa
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.28-31
    • /
    • 2010
  • 본 연구는 대구시의 상업지역의 용도지역변화를 GIS를 사용하여 시대별로 구축하고 이를 분석함으로써 변화의 특성을 고찰함에 그 목적이 있다. 연구의 방법은 도심기능의 분산과 그에 따른 상업지역을 중심으로 한 용도지역의 변화형태 그리고 상업시설의 입지형태를 분석하였다. 이에 따라 분석한 결과 상업지역의 입지에 따른 주변지역의 용도 지역의 변화와 아울러 가로축의 발달과 함께 상업시설의 형태도 선형으로 발달하며 기능을 분산시키는 것을 알 수 있었다.

  • PDF

A Study on The Subscriber Traffic Forecasting Mechanism Based on The Box-Jenkins Time Series Method (가입자 트래픽 예측방법 연구)

  • 임성식;신홍식
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.167-173
    • /
    • 1991
  • 현재까지 가입자 트래픽 예측방법은 계량학적 방법중 추세분석 방법을 이용하고 있는데, 이 방법은 급변하는 시장상황이나 지역여건을 고려하지 못하고 하나의 통계적 기술에 의한 획일화된 예측방법으로서 트래픽예측치가 실제 운용트래픽값과는 다소 차이가 있어왔다. 이러한 원인을 제거할 수 있는 하나의 방법으로서 Box-Jenkins 시계열 분석에 의한 트래픽 예측방법을 제안하고자 한다. 이 방법에 대한 이론을 살펴보고, 시뮬레이션을 통하여 얻은 결과를 각각 분석하여 문제점을 파악하고 실측치와 비교분석함으로서 본 논문에서 제안한 방법이 기존방법보다 타당함을 입증하려 하였다.

Satellite Rainfall Correction using Ground Rainfall Data (지점강우를 활용한 위성보정강우)

  • Kim, Joo Hun;Choi, Yun Seok;Kim, Kyeong Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.441-441
    • /
    • 2015
  • 북한의 수자원 현황을 분석하고 미래를 전망하는 일은 수자원 분야 전문가들의 공통된 관심사 중 하나이다. 그러나 많은 노력에도 불구하고 제한된 자료로 인해 이에 대한 체계적인 성과가 구축되지 못한 것이 사실이다(안재현 등, 2010). 북한 수자원 현황과 관련해서 1994년 한국수자원공사의"북한 수자원 현황 및 개발 동향"에 대한 연구와 1996년 한국과학기술단체총연합회의"남북한 수자원 비교평가 연구"가 수행된 바 있다. 본 연구에서는 2012년 7월 북한의 홍수피해에 대하여 북한지역의 빈약한 강우량 정보를 활용하여 위성으로부터 유도된 강우자료를 보정하여 북한지역의 홍수량을 산정하는데 활용할 수 있는 시계열 자료를 생성하는 것을 목적으로 하였다. 2012년 북한 홍수피해는 조선 중앙통신 보도에 의하면 6월 말부터 7월말까지 169명 사망, 400여명 실중, 144명 상해의 인명피해와 평안남북도, 자강도, 함경남북도 등 4만 3770여 가구가 침수되었으며, 농경지 피해는 6만 5280정보가 유실, 매몰, 침수(평안북도 2만 3400정보, 평안남도 2만 1900정보, 함경남도 5679정보, 함경북도 7220정보)의 피해를 입은 것으로 보도하고 있다(http://www.hani.co.kr/arti/politics/defense/545795.html). 한편, 북한의 기상수문국 통보에 의하면 2012년 장마가 시작된 이후 20일 동인 평균 강우량의 2배 가까운 비가 내렸으며, 특히 7월 19일 오후 9시부터 21일 오후 3시 사이 자강도 동신군에 413mm, 송원군에 383mm, 희천시에 322mm, 평안북도 태천군에 380mm, 향산군에 312mm, 동창군에 304mm의 폭우가 쏟아졌다고 조선중앙통신은 덧붙였다. 본 연구에서는 위성으로부터 유도된 강수자료 중 GSMaP_NRT자료를 활용하여 북한의 기상수문국에서 통보한 같이 기간의 강수량 자료를 분석한 결과 자강도 동신군 지역의 경우 총강우는 208.8mm로 분석되었으며, 평균강우는 9.49mm, 최대강우강도는 17.7mm/hr로 분석되었다. 두 자료의 총강우량에 대한 상대오차는 약 49.5% 정도의 오차가 있는 것으로 분석되었다. 위성강우 보정 방법으로 Immerzeel(2001) 등은 위성으로 관측된 시계열 자료와 지상계측된 시계열 자료를 분석하여 두 자료간의 평균과 표준편차를 이용하여 평균 및 표준편차 계수를 산정하여 위성자료에 대한 보정강우를 생성하는 방법을 제시한 바 있다. 본 연구에서는 위성으로부터 유도된 강우량 자료는 시계열 자료이나 지점계측 강우는 총강우만 존재하여 총강우에 대한 시계열 자료를 위성강수자료를 무차원화하여 지점계측의 위성 보정강우를 생성하였다.

  • PDF

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Surrogate Model for Potential Evapotranspiration Using a difference in Maximum and Minimum Temperature within a Hargreaves Modeling Framework (온도인자를 활용한 Hargreaves 모형 기반의 잠재증발산량 대체 모형 개발)

  • Kim, Ho Jun;Kim, Tae-Jeong;Lee, Kang Wook;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.184-184
    • /
    • 2020
  • 수자원 계획 및 관리 시 증발산량의 정량적 분석은 필수적으로 고려되는 사항 중 하나이다. 일단위 이하의 잠재증발산량 산정은 세계식량기구(FAO)가 Penman-Monteith 방법을 기반으로 개발한 FAO56 PM 방법을 주로 활용하며, 이는 다른 방법에 비하여 높은 정확성과 적용성이 뛰어나다. 그러나 FAO56 PM 방법의 입력 매개변수는 다양한 기상자료이며, 장기간의 신뢰성 높은 자료를 구축하는 것은 어려운 실정이다. 이에 본 연구에서는 증발산량 공식인 Hargreaves 공식을 활용하여 FAO56 PM 방법으로 산정된 잠재증발산량과 기온차 사이의 시계열 관계를 재구성한 회귀분석 기법을 개발하였다. 개발된 모형에 유역면적을 적용하여 유역면적별 잠재증발산량을 산정하였으며, 이를 기존의 잠재증발산량과의 비교를 통해 모형의 적합성을 평가하였다. 결과적으로, 복잡한 잠재증발산량식을 단순한 대체모형(surrogate model)으로 제시함으로써 효율적인 증발산량 정량적 평가와 제한적인 기상자료 조건에 보편적 활용이 가능하다. 향후 연구에서는 회귀분석방법에 Bayesian 추론기법을 활용하여 구성함으로 잠재증발산량의 불확실성을 정량적으로 표현하고자 한다.

  • PDF

Forecasting Spot Freight Rate in LNG Market (LNG 운송시장의 스팟운임 예측 연구)

  • Lim, Sangseop;Kim, Seok-Hun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.325-326
    • /
    • 2021
  • LNG는 환경규제에 따라 화석에너지에서 친환경 재생에너지로 전환되는데 중요한 역할을 하는 에너지원이다. UN산하 세계해사기구(IMO)의 MARPOL협약에 따라 선박 황산화물 배출가스규제로 LNG추진 선박에 대한 수요가 증가되고 있을 뿐만 아니라 미국의 쉐일혁명으로 LNG를 수출함에 따라 공급의 변화가 급격하게 이뤄지고 있다. 과거 국가 주도의 프로젝트 성격이 강한 LNG 운송시장은 장기정기용선계약이 대부분이었으나 수요와 공급시장의 급격한 변화로 스팟시장의 중요성이 커지고 있다. 따라서 본 논문은 LNG 운송시장에서 시장참여자들의 스팟거래에 합리적인 의사결정이 이뤄지도록 과학적인 예측방법을 제시하고자 한다. LNG 스팟운임 예측에 기계학습모델 중 인공신경망 모델을 적용할 것이며 기존의 시계열분석 방법인 ARIMA모델과 비교하여 본문에서 제시된 모델의 예측성능의 우수성을 확인하였다. 본 논문은 LNG 스팟운임을 다룬 최초의 연구로서 학문적인 차별성이 기대된다.

  • PDF

Forecasting hierarchical time series for foodborne disease outbreaks (식중독 발생 건수에 대한 계층 시계열 예측)

  • In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.499 -508
    • /
    • 2024
  • In this paper, we investigate hierarchical time series forecasting that adhere to a hierarchical structure when deriving predicted values by analyzing segmented data as well as aggregated datasets. The occurrences of food poisoning by a specific pathogen are analyzed using zero-inflated Poisson regression models and negative binomial regression models. The occurrences of major, miscellaneous, and overall food poisoning are analyzed using Poisson regression models and negative binomial regression models. For hierarchical time series forecasting, the MinT estimation proposed by Wickramasuriya et al. (2019) is employed. Negative predicted values resulting from hierarchical adjustments are adjusted to zero, and weights are multiplied to the remaining lowest-level variables to satisfy the hierarchical structure. Empirical analysis revealed that there is little difference between hierarchical and non-hierarchical adjustments in predictions based on pathogens. However, hierarchical adjustments generally yield superior results for predictions concerning major, miscellaneous, and overall occurrences. Without hierarchical adjustment, instances may occur where the predicted frequencies of the lowest-level variables exceed that of major or miscellaneous occurrences. However, the proposed method enables the acquisition of predictions that adhere to the hierarchical structure.

A Reexamination on the Influence of Fine-particle between Districts in Seoul from the Perspective of Information Theory (정보이론 관점에서 본 서울시 지역구간의 미세먼지 영향력 재조명)

  • Lee, Jaekoo;Lee, Taehoon;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • This paper presents a computational model on the transfer of airborne fine particles to analyze the similarities and influences among the 25 districts in Seoul by quantifying a time series data collected from each district. The properties of each district are driven with the model of a time series of the fine particle concentrations, and the calculation of edge-based weights are carried out with the transfer entropies between all pairs of the districts. We applied a modularity-based graph clustering technique to detect the communities among the 25 districts. The result indicates the discovered clusters correspond to a high transfer-entropy group among the communities with geographical adjacency or high in-between traffic volumes. We believe that this approach can be further extended to the discovery of significant flows of other indicators causing environmental pollution.

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Estimation of Prediction Values in ARMA Models via the Transformation and Back-Transformation Method (변환-역변환을 통한 자기회귀이동평균모형에서의 예측값 추정)

  • Yeo, In-Kwon;Cho, Hye-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.537-546
    • /
    • 2008
  • One of main goals of time series analysis is to estimate prediction of future values. In this paper, we investigate the bias problem when the transformation and back- transformation approach is applied in ARMA models and introduce a modified smearing estimation to reduce the bias. An empirical study on the returns of KOSDAQ index via Yeo-Johnson transformation was executed to compare the performance of existing methods and proposed methods and showed that proposed approaches provide a bias-reduced estimation of the prediction value.