DOI QR코드

DOI QR Code

Estimation of Prediction Values in ARMA Models via the Transformation and Back-Transformation Method

변환-역변환을 통한 자기회귀이동평균모형에서의 예측값 추정

  • Yeo, In-Kwon (Dept. of Statistics, Sookmyung Women's University) ;
  • Cho, Hye-Min (Dept. of Statistics, Sookmyung Women's University)
  • 여인권 (숙명여자대학교 이과대학 통계학과) ;
  • 조혜민 (숙명여자대학교 이과대학 통계학과)
  • Published : 2008.06.30

Abstract

One of main goals of time series analysis is to estimate prediction of future values. In this paper, we investigate the bias problem when the transformation and back- transformation approach is applied in ARMA models and introduce a modified smearing estimation to reduce the bias. An empirical study on the returns of KOSDAQ index via Yeo-Johnson transformation was executed to compare the performance of existing methods and proposed methods and showed that proposed approaches provide a bias-reduced estimation of the prediction value.

시계열자료 분석에 있어 주요 목적 중에 하나는 미래에 대한 예측 값을 추정하는 것이다. 이 논문에서는 정상자기회귀이동평균 모형에서 변환-역변환 방법을 이용하여 예측값을 구하는 과정에서 발생하는 문제에 대해 알아보고 회귀분석에서 제안되었던 smearing 추정방법을 시계열분석에서 사용할 수 있도록 붓스트랩을 이용하여 수정한 추정법을 소개한다. Yeo-Johnson 변환 (2000)을 이용한 KOSDAQ지수의 수익률 실증분석을 통해 기존에 사용되고 있는 방법의 문제점과 제안된 방법의 적절성에 대해 고찰해 보았다.

Keywords

References

  1. 조혜민, 오승언, 여인권 (2007). 변환된 자기회귀이동평균 모형에서의 예측구간추정, <응용통계연구>, 20, 541-550. https://doi.org/10.5351/KJAS.2007.20.3.541
  2. Box, G. E. P. and Cox, C. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252
  3. Duan, N. (1983). Smearing estimate: A nonparametric retransformation method, Journal of the American Statistical Association, 78, 605-610 https://doi.org/10.2307/2288126
  4. Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility, The Journal of Finance, 48, 1749-1778 https://doi.org/10.2307/2329066
  5. Glosten, L. R., Jagannathan, R. and Runkle, D. (1993). On the relation between the expected value and the volatility of nominal excess return on stocks, The Journal of Finance, 48, 1779-1801 https://doi.org/10.2307/2329067
  6. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrika, 59, 347-370 https://doi.org/10.2307/2938260
  7. Pagan, A. R. and Schwert, G. W. (1990). Alternative models for conditional stock volatility, Journal of Econometrics, 45, 267-290 https://doi.org/10.1016/0304-4076(90)90101-X
  8. Taylor, J. M. G. (1986). The retransformed mean after a fitted power transformation, Journal of the American Statistical Association, 81, 144-118
  9. Yeo, I. K. and Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954-959 https://doi.org/10.1093/biomet/87.4.954
  10. Zakoian, J. M. (1994). Threshold heteroskedastic models, Journal of Economic Dynamics and Control, 18, 931-955 https://doi.org/10.1016/0165-1889(94)90039-6