DOI QR코드

DOI QR Code

Gene Set Analysis - Absolute and Trim

절대치와 절삭을 이용한 유전자 집단 분석

  • 이광현 (세종대학교 대학원 응용통계) ;
  • 이선호 (세종대학교 응용수학)
  • Published : 2008.06.30

Abstract

Initial work of microarray data analysis focused on identification of differentially expressed genes, and recently, the focus has moved to discovering significant sets of functionally related genes. We describe some problems of GSEA and PAGE, and propose a modified method to identify significant gene sets. The results based on a simulated experiment and real data analysis using a set of publicly available data show the superiority of the newly proposed method, GSA-AT, in detecting significant pathways with the accurate prediction.

본 연구의 목적은 마이크로어레이 자료로부터 암 또는 질병에 유의한 유전자집단을 찾아내는 보다 효과적인 방법을 제안하고자 하는 것이다. 유전자 집단 분석의 대표적 방법인 PAGE와 GSEA의 한계점을 살펴보고, 그것을 보완하기 위한 GSA-AT라는 방법을 제안하였다. 모의실험과 실제자료실험을 통해 분석해 본 결과 본 연구에서 제안한 GSA-AT 방법에서 더 의미 있는 결과를 도출하였다.

Keywords

References

  1. Curtis, R. K., Oresic, M., Vidal-Puig, A. (2005). Pathways to the analysis of microarray data, Trend in Biotechnology, 23, 429-435 https://doi.org/10.1016/j.tibtech.2005.05.011
  2. Goeman, J. J., van de Geer, S. A., de Kort, F., van Houwelingen, H. C. (2004). A global test for groups of genes: Testing association with a clinical outcome, Bioinformatics, 20, 93-99 https://doi.org/10.1093/bioinformatics/btg382
  3. Kim, S. Y. and Volsky, D. J. (2005). PAGE: Parametric analysis of gene set enrichment, BMC Bioinformatics, 6, 1471-2105
  4. Manoli, T., Gretz, N., Grone, H. J., Kenzelmann, M., Eils, R. and Brors, B. (2006). Group testing for pathway analysis improves comparability of different microarray datasets, Bioinformatics, 22, 2500-2506 https://doi.org/10.1093/bioinformatics/btl424
  5. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003). PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180
  6. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. In Proceedings of the National Academy of Sciences of the United States of America, 102, 15545-15550
  7. Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, In Proceedings of the National Academy of Sciences of the United States of America, 99, 6567-6572
  8. Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, In Proceedings of the National Academy of Sciences of the United States of America, 98, 5116-5121