• Title/Summary/Keyword: 시간-주파수해석법

Search Result 210, Processing Time 0.029 seconds

경계요소법에 의한 대규모 3차원 지하구조물의 동적해석

  • 한국전산구조공학회
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.11-21
    • /
    • 1995
  • 3차원 대규모 지하구조물의 동적응답을 결정하기 위한 일반적인 수치해석이 제안되었다. 지반과 구조물을 해석하기 위하여 Laplace 변환을 적용한 경계요소법을 설명하였고, 지반-구조물계에 작용하는 외부 동적하중과 지진파를 고려할 수 있도록 공식화하였다. 동적교란이 전파되는 경우에 시간영역의 응답을 얻기 위하여는 구해진 변화된 해를 수치적인 Laplce 역변환을 수행하여야 하지만 동적교란이 조화적인 경우에는 응답이 주파수 영역으로부터 직접 얻어지며, 역변환이 필요하지 않다. 이 방법의 특징은 높은 정확도와 효율성이며, 지반-구조물계에 대하여 초기조건 및 점탄성 재료의 거동을 쉽게 고려할 수 있다는 것이다. 그러므로 이 방법은 다양한 지하구조물의 동적거동과 지진에 대한 취약함을 연구하기 위한 적절한 도구로 사용되어 질 수 있다.

  • PDF

An analysis of crosstalk in hihg-speed packaging interconnects using the finite difference time domain method (시간 영역 유한 차분법을 이용한 고속 패키지 접속 선로의 누화 해석)

  • 남상식;장상건;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1975-1984
    • /
    • 1997
  • In this paper, we analyzed the frequency characteristics and the crosstalk of the adjacent parallel lines and the crossed lines in high-speed packaging interconnections by using the three-dimensional finite difference time domain (3D FDTD) method. To analyze the actual crosstalk phenomena in the transmission of the high-speed digital sgnal, the step pulse with fast rise time was used for the source excitation signal instead of using the Gaussian pulse that is generally used in FDTD. To veify the theoretical resutls, the experimental interconnection lines that were fabricated on the Duroid substrate($\varepsilon_{r}$=2.33, h=0.787 [mm]) were tested by TDR(time domain reflectometry). The results show good agreement between the analyzed results and the tested outcomes.

  • PDF

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

Evaluation of the Corroded Pipe by Time-Frequency Analysis (시간-주파수 해석에 의한 부식된 배관의 평가)

  • Ahn, S.H.;Kim, J.W.;Do, J.Y.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.89-92
    • /
    • 2006
  • In this study, the pressure vessel piping with corrosion used during long term were investigated from the time-frequency analysis method. The damage of piping could be evaluated the attenuation factor by ultrasonic parameters such as center frequency and echo waveform. Based on NDE analysis by time-frequency analysis method, it should also be possible to evaluate from various damages and defects in piping members.

  • PDF

Simulation of Time-Domain Acoustic Wave Signals Backscattered from Underwater Targets (수중표적의 시간영역 음파 후방산란 신호 모의)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.140-148
    • /
    • 2008
  • In this study, a numerical method for a time-domain acoustic wave backscattering analysis is established based on a physical optics and a Fourier transform. The frequency responses of underwater targets are calculated based on physical optics derived from the Kirchhoff-Helmholtz integral equation by applying Kirchhoff approximation and the time-domain signals are simulated taking inverse fast Fourier transform to the obtained frequency responses. Particularly, the adaptive triangular beam method is introduced to calculate the areas impinged directly by acoustic incident wave and the virtual surface concept is adopted to consider the multiple reflection effect. The numerical analysis result for an acoustic plane wave field incident normally upon a square flat plate is coincident with the result by the analytic time-domain physical optics derived theoretically from a conventional physical optics. The numerical simulation result for a hemi-spherical end-capped cylinder model is compared with the measurement result, so that it is recognized that the presented method is valid when the specular reflection effect is predominant, but, for small targets, gives errors due to higher order scattering components. The numerical analysis of an idealized submarine shows that the established method is effectively applicable to large and complex-shaped underwater targets.

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate (다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석)

  • Kim, Yoonsuk;Kim, Minsu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.16-22
    • /
    • 2013
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

Comparison of Damping Ratios by Half Power Bandwidth Method and Synchronized Human Excitation (하프파워법과 인력가진법에 의한 감쇠율 비교)

  • Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • This paper is concerned with the damping ratios of two methods, which are frequency domain and time domain approach. Ambient vibrations and synchronized human excitation test were conducted to three reinforced concrete buildings ranging from eleven to nineteen stories. The performance of the half power bandwidth method was investigated using three kinds of sample size, 1024, 2048, and 4096. The damping ratio by synchronized human excitation ranges from 1.05% to 1.22% in the long direction and from 1.16% to 1.50% in short direction. Damping by half power bandwidth method is slightly more overestimated than the synchronized human excitation due to insufficient record length. Damping evaluation by half power bandwidth method was found to be enhanced by using the narrower bandwidth with long recorded data.

  • PDF

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

Comparisons of RCS Characteristic of Spherical Frequency Selective Surfaces with FSS Element Arrangement (FSS 단위셀 배열구조에 따른 구형 주파수 선택 구조의 RCS 특성비교)

  • Hong, Ic-Pyo;Lee, In-Gon
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • In this paper, we analyzed the electromagnetic characteristics of the spherical frequency selective surface with different arrangement of crossed dipole slot elements for reducing the RCS(radar cross section). The three dimensional MOM(method of moment) with RWG basis is used to analyze the proposed structure. To reduce the simulation time, we applied the BiCGSTab(Biconjugate Gradient Stabilized) algorithm as an iterative method and presented the comparison results with Mie's theoretical results for PEC sphere to show the validity of this paper. From the simulation results, the different arrangement of elements array showed the difference RCS that cannot be negligible. The arrangement method of element in frequency selective surface will be one of variables for the design of curved frequency selective structures.

A Study on Frequency-Time Plane Analysis of Wavelet (웨이브렛의 주파수-시간 평면 해석에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and depends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF