• 제목/요약/키워드: 승패 예측

검색결과 29건 처리시간 0.023초

인공지능 환경에서 이닝별 데이터를 이용한 KBO 승패 예측 (KBO Win/Lose Predict Using Innings Data in AI Environments)

  • 김태훈;임성원;고진광
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1028-1030
    • /
    • 2020
  • 과거 몇 년간의 데이터를 기반으로 현재 KBO 승패를 예측하고자 하는 것으로, 경기 초반 페이스가 얼마나 승패에 영향을 미치는지 파악하고자 한다. 경기의 이닝별 데이터로 딥러닝·머신러닝을 이용해 승리 팀을 예측하여 리그 순위를 예측하고, Flask 웹 프레임워크를 통해 입력값을 받아 예측해 주는 웹사이트를 구축하였다.

혼합형 기계 학습 모델을 이용한 프로야구 승패 예측 시스템 (Win/Lose Prediction System : Predicting Baseball Game Results using a Hybrid Machine Learning Model)

  • 홍석미;정경숙;정태충
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권6호
    • /
    • pp.693-698
    • /
    • 2003
  • 야구는 매 경기마다 다양한 기록을 생성하며, 이러한 기록을 기반으로 다음 경기에 대한 승패예측이 이루어진다. 프로야구 승패 예측에 대한 연구는 많은 사람들에 의해 행해져 왔으나 아직 이렇다할 결과를 얻지 못하고 있는 상태이다. 이처럼 승패 예측이 어려운 이유는 많은 경기 기록들 중 승패 예측에 영향을 주는 요소의 선별이 어렵고, 예측에 사용된 자료들 간의 중복 요인으로 인해 학습 모델의 복잡도만 증가시킬 뿐 좋은 성능을 보이지 못하고 있다. 이에 본 논문에서는 전문가들의 의견을 바탕으로 학습 요소들을 선택하고, 선택된 자료들을 이용하여 휴리스틱 함수를 구성하였다. 요소들 간의 조합을 통해 예측에 영향을 줄 수 있는 새로운 값을 산출함과 동시에 학습 알고리즘에 사용될 입력 값의 차원을 줄일 수 있는 혼합형 모델을 제안하였다. 그 결과, 학습 알고리즘으로 사용된 역전파 알고리즘의 복잡도를 감소시키고, 프로야구 경기 승패 예측에 있어서도 정확성이 향상되었다.

게임 데이터를 이용한 지표 개발과 승패예측모형 설계 (Development of game indicators and winning forecasting models with game data)

  • 구지민;김재희
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.237-250
    • /
    • 2017
  • 스포츠의 새로운 분야로 자리 잡고 있는 e-스포츠는 국내 뿐 아니라 해외에서도 많은 인기를 얻고 있다. 그 중 AOS (aeon of strife) 장르의 게임들은 대표적인 e-스포츠 대회 중 하나로 주목받으며, 방송 및 미디어 매체는 다양한 통계 지표를 활용한 게임 중계를 실시하고 있다. 본 논문에서는 AOS 장르의 게임인 리그오브레전드의 게임 데이터를 이용한 통계적 분석으로 게임 내 지표를 개선하고 승패예측을 위한 승패예측모형을 설계한다. 인자 분석을 통해 구한 인자로 기존의 지표를 개선하는 새로운 지표를 창출하고, 판별 분석, 인공신경망, SVM을 이용한 승패예측모형을 추정해 모형 간 비교를 실시하였다. 그 결과, 게임 내 포지션의 특성을 반영한 인자 점수로 새로운 지표를 제안하였으며, 세 가지 승패예측모형은 모두 평균 95% 의 높은 정분류율을 보였다.

Heuristic model를 이용한 프로야구 승패 예측 (Predication of win/lose of Professional baseball using Heuristic model)

  • 김동식;홍석미;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.325-328
    • /
    • 2000
  • 프로야구경기의 승패 예측의 문제는 그리 쉬운 일이 아니다. 왜냐하면 경기에 영향을 미치는 요소가 무한하기 때문이다. 예를 들어, 경기당일의 선수들의 컨디션이나 사기, 경기당일의 날씨, 구장요건, 상대팀에 대한 심리적 요인등 사전에 경기영향을 미치는 요소가 무한하다. 본 연구실에서는 과거 경기기록 자료를 기반으로 유용한 규칙을 찾아내어 분류트리를 만들어 학습하는 ID3 알고리즘을 프로야구 승패예측 시스템 구성에 사용하여 보았으나, 이산적인 자료의 처리로 인해 연속적인 경기자료를 고려하지 못하는 문제로 예측율이 더이상 향상되지 않았다. 따라서, 본 논문에서는 휴리스틱 방법을 이용한 경기전 예측과 경기중 예측을 이닝별 득점으로 세분화하여, 실제 경기상황을 고려한 일반적인 예측모형을 만들어 예측율을 향상시키고자 한다. 향후에는 더욱 세분화시켜 Case-based에 의한 예측을 하고자 한다.

  • PDF

기계학습을 활용한 게임승패 예측 및 변수중요도 산출을 통한 전략방향 도출 (Predicting Game Results using Machine Learning and Deriving Strategic Direction from Variable Importance)

  • 김용우;김영민
    • 한국게임학회 논문지
    • /
    • 제21권4호
    • /
    • pp.3-12
    • /
    • 2021
  • 본 연구에서는 게임 초반 10분의 데이터를 이용하여 리그오브레전드 게임의 최종승패를 랭크별로 예측하고, 구축된 승패예측 모형으로부터 변수중요도를 추출하여 승리를 위한 초반 게임운영의 방향성을 알아보았다. 그 결과 모든 랭크에서 70% 이상의 정확도로 승패를 예측할 수 있었다. 이는 경기 양상이 대부분 뒤집히지 않고 최종승패로 이어지는 것을 의미하며, 이러한 경향성은 상위 랭크로 갈수록 더욱 강하게 나타났다. 랭크와 무관하게 킬(데스)가 초반 게임에서 최종승패에 가장 큰 영향을 미치는 요소로 나타났으나, 일부 변수는 랭크에 따라 중요도 순위가 변화하였고 이는 유저가 속한 랭크에 따라 승리에 효과적인 초반 전략방향에 차이가 있음을 시사한다.

양방향 순환신경망 임베딩을 이용한 리그오브레전드 승패 예측 (Predicting Win-Loss of League of Legends Using Bidirectional LSTM Embedding)

  • 김철기;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.61-68
    • /
    • 2020
  • e-sports는 최근 꾸준한 성장을 이루면서 세계적인 인기 스포츠 종목이 되었다. 본 논문에서는 e-sports의 대표적인 게임인 리그오브레전드 경기 시작 단계에서의 승패 예측 모델을 제안한다. 리그오브레전드에서는 챔피언이라고 불리는 게임 상의 유닛을 플레이어가 선택하여 플레이하게 되는데, 각 플레이어의 선택을 통하여 구성된 팀의 챔피언 능력치 조합은 승패에 영향을 미친다. 제안 모델은 별다른 도메인 지식 없이 플레이어 단위 챔피언 능력치를 팀 단위 챔피언 능력치로 임베딩한 Bidirectional LSTM 임베딩 기반 딥러닝 모델이다. 기존 분류 모델들과 비교 결과 팀 단위 챔피언 능력치 조합을 고려한 제안 모델에서 58.07%의 가장 높은 예측 정확도를 보였다.

DNN을 활용한 'League of Legends' 승부 예측 (Prediction of League of Legends Using the Deep Neural Network)

  • 노시재;이혜민;조소은;이도윤;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.217-218
    • /
    • 2021
  • 본 논문에서는 다층 퍼셉트론을 활용하여 League of Legends 게임의 승패를 예측하는 Deep Neural Network 프로그램을 설계하는 방법을 제안한다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 15분 데이터 중 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 softmax 함수보다 sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.

  • PDF

AOS 장르 게임의 승패 예측 모형의 설계와 활용 (Design and Application of a Winning Forecast Model of the AOS Genre Game)

  • 구지민;유견아
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권1호
    • /
    • pp.37-44
    • /
    • 2017
  • AOS(Aeon of Strife)장르의 게임들은 단순히 즐기는 컴퓨터 게임이 아닌 대표적인 e스포츠 종목으로 자리매김하고 있으며 전문성을 필요로 하는 스포츠의 특성상, 게임 플레이 패턴 및 시즌 별 캐릭터 선택 등 게임 운영에 필요한 통계 분석의 중요성이 증가하고 있다. 본 논문에서는 대표적인 AOS 게임 중의 하나인 리그오브레전드의 게임 데이터를 이용해 데이터 마이닝 기법을 이용한 게임의 전략적 분석을 실시한다. 통계적 승률 예측 기법인 로지스틱 회귀분석과 판별 분석 및 인공신경망을 이용하여 게임의 승패 예측 모형을 설계하고 실험한다. 게임 데이터 분석 결과는 확률을 표시한 그래프로 표현되어 게임 플레이를 돕기 위해 개발된 시각적 도구에 이용한다. 승패 예측 모형의 실험 결과, 평균적으로 95%의 높은 분류율을 보이고 시각화 도구를 통해 게임 플레이의 다양한 전략 수립에 이용됨을 보인다.

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.213-221
    • /
    • 2021
  • 이 논문은 League of Legends (LOL) 게임의 승패를 예측하기 위하여 Deep Neural Network Model 시스템을 제안한다. 이 모델은 다양한 LOL 빅데이터를 활용하여 TensorFlow 의 Keras에 의하여 설계하였다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 데이터를 수집하여 그 중에서 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 이 모델은 Sigmoid, ReLu 와 Logcosh 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 15분 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 활성화, 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.

인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구 (A Study on the Win-Loss Prediction Analysis of Korean Professional Baseball by Artificial Intelligence Model)

  • 김태훈;임성원;고진광;이재학
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.77-84
    • /
    • 2020
  • 본 연구에서는 인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구를 했다. 승리할 팀과 해당 팀의 최종 리그 순위를 예측했고, 사용자의 편의를 위해 웹사이트도 구축했다. 각 1·3·5이닝 별로 가장 정확도가 높으면서도 오차가 적은 모델을 최적 모델로 선정해 승·패 결과를 예측했고, 이를 토대로 순위표를 작성했다. 결과표는 2020년 개막인 5월 5일부터 8월 30일까지의 예측 결과를 바탕으로 작성했다. 기아타이거즈가 아닌 다른 구단끼리의 경기는 실제 결과를 사용했다. 머신러닝 모델은 KNN과 AdaBoost가 최적 모델로 선정되었으며, 실제 순위와 비교해 본 결과, 경기가 진행될수록, 예측 결과의 순위 오차가 점점 작아지는 것을 확인했다. 딥러닝 모델은 89%의 정확도를 기록했고, 머신러닝 모델과 마찬가지로 경기를 진행할수록 예측 결과 순위 오차가 작아지는 것을 확인했다. 실험 결과는 한국 프로야구 승·패 결과 예측뿐 아니라 다양한 분야에서 사용할 수 있을 것으로 사료된다. 방송국에서 야구 경기를 중계하는 중 이닝별로 인공지능 알고리즘이 예상한 승·패 여부를 중계화면에 띄울 수 있다. 시청자들에게 새로운 흥미를 일으킬 수 있을 것이고, 나아가 구단의 감독들이 이닝마다 데이터를 분석해 경기 중 유동적으로 승리하기 위한 전략을 세울 수 있을 것으로 기대된다.