• Title/Summary/Keyword: 스프링 요소

Search Result 358, Processing Time 0.022 seconds

Finite Element Analysis of Slewing Bearings for Wind Turbines Using Spring Elements (스프링요소를 이용한 풍력발전기용 슬루잉 베어링의 유한요소해석)

  • Han, Ki-Bong;Kang, Jong-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.239-247
    • /
    • 2020
  • This study is about design and verification of stress reduction of bearings for wind turbines. In a slewing bearing having a typical four-contact structure, the contact point moves to the end of the raceway due to a large moment load, resulting in a stress concentration. A bearing was designed to reduce such contact point movement. The deformation behavior of typical ball bearings and newly designed bearings was calculated through finite element analysis under ultimate load by replacing the ball with a spring element. The contact stress between the ball and the raceway was calculated by finite element analysis by inputting the deformation behavior analysis result as a boundary condition. The effectiveness of the bearing stress analysis method using spring elements was verified through comparison of the contact stress according to the bearing structure.

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.

A study on Structure Analysis about 47ton Excavator Drive Motor Gear carrier (47ton 굴삭기 주행모터 기어 캐리어의 구조해석에 관한 연구)

  • Jeong, Il-Jung;Lee, Sang-Hoon;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.724-729
    • /
    • 2007
  • The study is a structure analysis by applying the output torque and tangential force on 47 ton excavator drive motor gear carrier. The finite element analysis for 3D model is performed by ABAQUS/Standard. We made an estimate by evaluating the results of the finite element analysis.

  • PDF

A Study on the Vibration Characteristics of Elastically Restrained Beams (탄성지지된 보의 진동특성에 관한 연구)

  • 이규섭;조창기;류봉조;윤영식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.116-120
    • /
    • 1995
  • 본 연구의 목적은 탄성 스프링 지지된 외팔보 모델의 고유진동수를 엄밀해, 유한요소법의 근사해, 실험 값을 비교하여 해의 타당성을 검토하고, 진동 특성을 분석함으로서 이러한 보 모델에 대한 유용한 설계 기초자료를 얻는데 있다.

  • PDF

A study on the characteristic analysis of superposed leaf springs with geometric and material nonlinearities (기하학적. 재료적 비선형성을 갖는 중첩된 판 스프링의 특성해석에 관한 연구)

  • 김형구;임정식;김일곤;손동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.13-22
    • /
    • 1990
  • A general analysis method is proposed for analysis of the superposed structures with geometric and material nonlinearities. It is presumed that no friction occurs between structures. It utilizes a shell element for the geometric and material nonlinearities and imposes various deformation constraints for the contact and interaction between structures. To show the reliability and effectiveness of this method, superposed cantilevers for which exact solutions can be obtained and holddown spring assemblies which are now used in PWR reactors are chosen as analysis models. The results of analyses were compared with exact solution in the case of cantilevers and with test results in the case of holddown spring assemblies. The analysis results obtained by this method showed good agreement with the reference values.

A Study on Foot Pressure by using an Insole Equipped with the Orthogonal Grid Sensor (직교 그리드 센서가 삽입된 인솔을 이용한 족압분포 연구)

  • Son, Jeong-Hyeop;Jun, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • In this study, we present a research method to develop a shoe that prevents foot injury by inducing the foot pressure. An orthogonal grid sensor was used to check the foot pressure in the upright standing position, and the change in the foot pressure distribution for various conditions was compared. We checked the conditions for distributing foot pressure efficiently by changing the spring constant of the spring inserted into the sole of the shoe and the foot pressure generated with or without the arch of the insole. In order to minimize the experimental error from the randomness of the human body's behavior, it is possible to predict through foot pressure under certain conditions through finite element analysis that simulates the pressure distribution. By checking the change of foot pressure according to the number and arrangement of springs through finite element analysis, conditions were established to provide more efficient foot pressure. The result can be used for designing footwear for patients with diabetic feet.

Construction of information database with tool compensation histories for the tool design of a pillar part (차량 필러부품 프레스 금형설계를 위한 금형보정이력 정보 데이터베이스 구축)

  • Kim, Se-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.43-50
    • /
    • 2012
  • Database for the information of the shape accuracy is constructed with the finite element stamping analysis of the center pillar member. Analyses are carried out in order to investigate the effect of tool compensation on the product quality previously performed by an expert in the press shop. The compensation procedure is provided with three sequences for improving shape accuracy of the member by reducing the amount of springback. The analysis result shows that shape inaccuracy in the product is caused by sagging and twisting phenomena from displacement of the section part due to excessive amount of springback. From the database with springback analyses, design modification guidelines are proposed for improving the shape accuracy. The guideline is directly applied to a member with the similar shape and the sound product is obtained successfully reducing the amount of springback.

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • 김진훈;이수종;이경호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF

A Determination of Design Parameters for Application of Composite Coil Spring in a Passenger Vehicle (승용차 복합재 코일스프링 개발을 위한 설계변수들의 결정)

  • Oh, Sung-Ha;Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • This paper presents the feasibility on the application of composite coil spring, which has great interest in the automobile industry. In order to obtain much lighter weight of the composite spring, it will be necessary to optimize the design variables such as fiber angles and diameter of coil, etc. First of all, mechanical properties were measured to consider the effects of FVR and ply angles for carbon fiber composite material. And the shear modulus with respect to ply angles were derived based on twisting angles calculated by torsional beam model. Next we determined the design parameters of composite coil spring, which has equivalent spring rate to the steel coil spring. In order to assess the proposed method, finite element model of the composite spring was developed and analysed to obtain the spring constant. The results showed that static spring rate of the composite spring was in a good agreement with that of steel spring.