• 제목/요약/키워드: 스테인리스강 316L

검색결과 96건 처리시간 0.028초

316 L 스테인리스강의 인장성질과 감쇠능의 관계 (Correlationship between Tensile Properties and Damping Capacity of 316 L Stainless Steel)

  • 권민기;강창룡
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.1-5
    • /
    • 2014
  • This study is experimentally investigated whether or not a relationship exists between the mechanical properties and damping capacity of cold-rolled 316 L stainless steel. Deformation-induced martensite was formed with surface relief and directionality. With the increasing degree of deformation, the volume fraction of ${\varepsilon}$-martensite increased, and then decreased, while ${\alpha}^{\prime}$-martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongation was decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affected in the ${\alpha}^{\prime}$-martensite; hence, damping capacity was influenced greatly by ${\varepsilon}$-martensite. Thus, there was no proportional relationship between strength, elongation, and damping capacity.

Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가 (Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio)

  • 김연희;장아영;강동훈;고대은;신용택;이해우
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

시효열처리 및 UNSM 처리에 따른 316L 스테인리스강의 입계부식거동 (Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment)

  • 이정희;김영식
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.313-324
    • /
    • 2015
  • Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering.

펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구 (Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature)

  • 정세진;조계현
    • 한국표면공학회지
    • /
    • 제35권1호
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과 (Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC)

  • 김민욱;김도향;한승희;김유찬
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성 (Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

질소 이온주입된 AiSi 316L 스테인리스강 소결체의 공식거동 (Pitting Corrosion Behavuor of N2+ ion Implanted AISI 316L Stainless Steel Compacts)

  • 최한철
    • 한국표면공학회지
    • /
    • 제31권2호
    • /
    • pp.73-80
    • /
    • 1998
  • The aim of this study is to develop sintered stainless steels (SSS) with good mechanical strength, wear resistance, and corrosion resistance by nitrogen ion implantation on the Culated SSS surface. Stainless steel compacts containg Cu (2-10 wt%) were prepared by electroless Cu-pating method which results in the increased3 homogenization in alloying powder. Nitrogen ion implantation was carried out by using N2 gas as the ion source. Nitrogen ions were embedded by an acceleratol of 130keV with doese $3.0\times10^{17}\;ions/\textrm{cm}^2$ on the SSS at $25^{\circ}C$ in$2\times10^{-6}$ torr vacuum. The nitrogen ion implanted SSS obtained from anodic ploarization curves revealed higher corrosion potential than that of nitrogen ion unimplante one. And nitrogen ion implanted 316LSSS had good resistance to pitting corrosion due to the synergistic effect of Mo and N, and the inhibition of $NH_4\;^+$<\TEX>, against $CI^-$<\TEX>.

  • PDF

스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향 (Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel)

  • 김한군;빈정욱
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

선택적 레이저 용융공정을 이용한 316L 스테인리스강 분말 3차원 조형체의 미세조직 및 경도 연구 (Study on Microstructures and Hardness of STS316L Fabricated by Selective Laser Melting)

  • 신기훈;최준필;김경태;김병기;유지훈
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.210-215
    • /
    • 2017
  • In this study, STS316L powders prepared by gas atomization are used to manufacture bulk structures with dimensions of $10{\times}10{\times}10mm^3$ using selective laser melting (SLM). The microstructures and hardness of the fabricated 316L stainless steel has been investigated with the laser beam overlap varied from 10% to 70%. The microstructures of the fabricated STS316L samples show a decrease in the balling and satellite of powders introducing defect in the bulk samples and the porosity caused by the gap between the molten metal pools disappearing as the overlap ratio increases, whereas a low overlap ratio results in significant balling and a large amount of isolated powders due to the increased gap between the melt pools. Furthermore, the highest value in Vickers hardness is obtained for the sample fabricated by 30% overlapped laser beams. These results show that the overlap ratio of laser beams in the SLM process should be considered as an important process parameter.

SLM 방식으로 출력된 STS 316L의 기계적 및 마찰·마모 특성에 미치는 UNSM처리 후 영향에 관한 연구 (A Study on the Effect of UNSM Treatment on the Mechanical and Tribological Properties of STS 316L Printed by Selective Laser Melting)

  • 노준석;산성충호;우마로프 라크마트전;편영식;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.270-278
    • /
    • 2018
  • STS 316L prepared by additive manufacturing (AM) exhibits deterioration of mechanical properties and wear resistance due to the presence of defects such as black-of-fusion defects, internal porosity, residual stress, and anisotropy. In addition, high surface roughness (integrity) of AM products remains an issue. This study aimed to apply ultrasonic nanocrystal surface modification (UNSM) technology to STS 316L prepared by AM to increase the surface hardness, to reduce the surface roughness, and to improve the friction and wear behavior to the level achieved by bulk material manufactured using traditional processes. Herein, the as-received and polished specimens were treated by UNSM technology and their resulting properties were compared and discussed. The results showed that UNSM technology increased the surface hardness and reduced the surface roughness of the as-received and polished specimens. These results can be attributed to grain size refinement and pore elimination from the surface. Moreover, the friction of the as-received and polished specimens after UNSM technology was lower compared to those of the as-received and polished specimens, but no significant differences in wear resistance were found.