DOI QR코드

DOI QR Code

Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

시효열처리 및 UNSM 처리에 따른 316L 스테인리스강의 입계부식거동

  • Lee, J.H. (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • 이정희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김영식 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2015.11.03
  • Accepted : 2015.12.14
  • Published : 2015.12.31

Abstract

Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering.

Keywords

References

  1. S. S. Hwang, Corros. and Protect., 12, 1 (2013).
  2. V. Azar, B. Hashemi, and M. R. Yazdi, Surf. Coat. Tech., 204, 3546 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.015
  3. D. H. Hur, M. S. Choi, D. H. Lee, M. H. Song, S. J. Kim, and J. H. Han, Nucl. Eng. Des., 227, 155 (2004), https://doi.org/10.1016/j.nucengdes.2003.09.002
  4. P. Sanjurjo, C. Rodriguez, I. F. Pariente, F. J. Belzunce, and A. F. Canteli, Procedia Eng., 2, 1539 (2010). https://doi.org/10.1016/j.proeng.2010.03.166
  5. O. Badran, N. Kloub, and M. Al-Tal, American J. Appli. Sci., 5, 1397 (2008). https://doi.org/10.3844/ajassp.2008.1397.1402
  6. M. E. Matarneh, Adv. Theor. Appli. Mech., 5, 45 (2012).
  7. H. Kumar, S. Singh, and P. Kumar, J. Eng. Sci. Emerging Technol., 5, 12 (2013).
  8. P. Peyre, C. Braham, J. Ledion, L. Berthe, and R. Fabbro, J. of Mater. Eng. Perform., 9, 656 (2000). https://doi.org/10.1361/105994900770345520
  9. U. Trdan and J. Grum, Corros. Sci., 59, 324 (2012). https://doi.org/10.1016/j.corsci.2012.03.019
  10. C. S. Montross, T. Wei, L. Ye, G. Clark, and Y. W. Mai, J. Fatigue, 24, 1021 (2002). https://doi.org/10.1016/S0142-1123(02)00022-1
  11. A. Telang, C. Ye, A. Gill, S. Teysseyre, S. R. Mannava, D. Qian, and W. K. Vasudevan, proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, the Grove Park Inn in Asheville, NC, USA, August (2013).
  12. M. A. M. Azhari, Effects of waterjet treatment on surface integrity of metals and its optimization, Dr.-Ing. Dissertation, Technische Universitat Kaierslautern, Mai (2014).
  13. A. K. Gujba and M. Medraj, Materials, 7, 7925 (2014). https://doi.org/10.3390/ma7127925
  14. C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K. Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, and V. K. Vasudevan, Mater. Sci. Eng A, 613, 274 (2014). https://doi.org/10.1016/j.msea.2014.06.114
  15. H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyoun, and K. Shin, Corros. Sci., 51, 2826 (2009). https://doi.org/10.1016/j.corsci.2009.08.008
  16. Y. S. Pyun, J. H. Park, C. M. Suh, A. Amanov, and J. H. Kim, Adv. Mater. Research, 275, 174 (2011). https://doi.org/10.4028/www.scientific.net/AMR.275.174
  17. K. R. Trethewey and J. Chamberlain, Corros. Sci. Eng., 2nd ed. Longman Scientific & Technical, England (1995).
  18. A. J. Sedriks, Corrosion of stainless steels, A Wiley-Interscience Publication, New York (1996).
  19. X. G. Wang, D. Dumortier, and Y. Riquiier, Duplex Stainless Steel '91, p. 127, France (1991).
  20. V. Randle and G. Owen, Acta Mater., 54, 1777 (2006). https://doi.org/10.1016/j.actamat.2005.11.046
  21. P. Lin, G. Palumbo, U. Erb, and K. T. Aust, Scripta Metall. Mater., 33, 1387 (1995). https://doi.org/10.1016/0956-716X(95)00420-Z
  22. G. Palumbo, K. T. Aust, E. M. Lehockey, U. Erb, and P. Lin, Scripta Mater., 38, 1685 (1998). https://doi.org/10.1016/S1359-6462(98)00077-3
  23. Y. Pan, B. L. Adams, T. Olson, and N. Panayotou, Acta Mater., 44, 4685 (1996). https://doi.org/10.1016/S1359-6454(96)00125-5
  24. M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato, and I. Karibe, Acta Mater., 50, 2331 (2002). https://doi.org/10.1016/S1359-6454(02)00064-2
  25. S. Kumar, B. S. Prasad, V. Kain, and J. Reddy, Corros. Sci., 70, 55 (2013). https://doi.org/10.1016/j.corsci.2012.12.021
  26. M. Kumar, W. E. King, and A. J. Schwartz, Acta Mater., 48, 2081 (2000). https://doi.org/10.1016/S1359-6454(00)00045-8
  27. D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P. K. De, Acta Mater., 50, 4587 (2002). https://doi.org/10.1016/S1359-6454(02)00306-3
  28. P. M. Ahmedabadi, V. Kain, B. K. Dangi, and I. Samajdar, Corros. Sci., 66, 242 (2013). https://doi.org/10.1016/j.corsci.2012.09.026
  29. R. Jones and V. Randle, Mater. Sci. Eng A, 527, 4275 (2010). https://doi.org/10.1016/j.msea.2010.03.058
  30. M. Michiuchi, H. Kokawa, Z. J. wang, Y. S. Sato, and K. Sakai, Acta Mater., 54, 5179 (2006). https://doi.org/10.1016/j.actamat.2006.06.030
  31. V. Randle, Acta Mater., 52, 4067 (2004). https://doi.org/10.1016/j.actamat.2004.05.031
  32. Y. Hyun, H. Kim, Corros. Sci. Tech., 12, 265 (2013). https://doi.org/10.14773/cst.2013.12.6.265
  33. A. Telang, A. S. Gill, D. Tammana, X. Wen, M. Kumar, S. Teysseyre, S. R. Mannava, D. Qian, and V. K. Vasudevan, Mater. Sci. Eng A, 648, 280 (2015). https://doi.org/10.1016/j.msea.2015.09.074
  34. O. Takakuwa and H. Soyama, Chemical Eng. Sci., 5, 62 (2015). https://doi.org/10.4236/aces.2015.51007
  35. I. Kauris and W. Gust, Fundamentals of grain and interface boundary diffusion, p. 275, Ziegler Press, Stuttgart, Germany (1988).
  36. JLe Coze, M. Biscondi, J. Levy, C. Goux, Mem. Sci. Rev. Metall, 70, 397 (1973). https://doi.org/10.1051/metal/197370050397
  37. JLe Coze, M. Biscondi, Can. Metall. Q., 13, 59 (1974). https://doi.org/10.1179/cmq.1974.13.1.59
  38. M. Froment, J. Phys. Paris, 36, C4 (1975).
  39. X. R. Qian, Y. T. Chou, Philos. Mag. A, 45, 1075 (1982). https://doi.org/10.1080/01418618208240918
  40. P. H. Pumphrey, Special high angle boundaries, grain boundary structure and properties, p. 13, Academic Press, London (1976).
  41. G. Palumbo, K. T. Aust, Acta Metall. Mater., 38, 2343 (1990). https://doi.org/10.1016/0956-7151(90)90101-L
  42. P. Lin, G. Palumbo, U. Erb, K. T. Aust, Scripta Metall. Mater., 33, 1387 (1995). https://doi.org/10.1016/0956-716X(95)00420-Z
  43. H. Kokawa, H. Shimada, Y. S. Sato, J. Mater., 52, 34 (2000).
  44. H. Kokawa, T. Koyanagawa, M. Shimada, Y. S. Sato, and T. Kuwana, Properties of complex inorganic solids, A. Meike ed., p. 1, Kluwer Academic Plenum, New York, (2000).
  45. R. V. Stickler, Mem. Sci. Rev. Metall., 60, 489 (1963).
  46. V. Cihal and I. Kacova, Corros. Sci., 10, 875 (1970). https://doi.org/10.1016/S0010-938X(70)80106-8
  47. S. X. Li, Y. N. He, S. R. Yu, and P. Y. Zhang, Corros. Sci., 66, 211 (2013). https://doi.org/10.1016/j.corsci.2012.09.022
  48. ASTM A262, Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels, ASTM (2002).
  49. G. H. Aydogdu and M. K. Aydinol, Corros. Sci., 48, 3565 (2006). https://doi.org/10.1016/j.corsci.2006.01.003
  50. K. S. Lee, J. K. Lee, K. O. Song, and J. H. Park, Trans. Korean. Soc. Mech. Eng. A, 35, 453 (2011). https://doi.org/10.3795/KSME-A.2011.35.5.453
  51. J. K. Kim, Y. H. Kim, J. S. Lee, and K. Y. Kim, Corros. Sci., 52 ,1847 (2010). https://doi.org/10.1016/j.corsci.2010.01.037
  52. J. K. Kim, Y. H. Kim, B. H. Lee, and K. Y. Kim, Electrochim. Acta, 56, 1701 (2011). https://doi.org/10.1016/j.electacta.2010.08.042
  53. J. K. Kim, Y. H. Kim, S. H. Uhm, J. S. Lee, and K. Y. Kim, Corros. Sci., 51, 2716 (2009). https://doi.org/10.1016/j.corsci.2009.07.008
  54. J. K. Kim, B. J. Lee, B. H. Lee, Y. H. Kim, and K. Y. Kim, Scripta Mater., 61, 1133 (2009). https://doi.org/10.1016/j.scriptamat.2009.08.045
  55. B. Weiss and R. Stickler, Metall. Trans., 3, 851 (1972). https://doi.org/10.1007/BF02647659
  56. H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert, Mat. Sci. Eng. A, 372, 98 (2004). https://doi.org/10.1016/j.msea.2003.12.017
  57. N. M. Alanazi, A. M. El-Sherik, S. H. Alamar, and S. Shen, Int. J. Electrochem. Sc., 8, 10350 (2013).
  58. X. Zhao, P. Munroe, D. Habibi, and Z. Xie, J. of Asian Ceramic Soc., 1, 86 (2013). https://doi.org/10.1016/j.jascer.2013.03.002
  59. T. Wang, J. Yu, and B. Dong, Surf. Coat. Techn., 200, 4777 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.046
  60. W. Ye, Y. Li, and F. Wang, Electrochim. Acta, 51, 4426 (2006). https://doi.org/10.1016/j.electacta.2005.12.034

Cited by

  1. Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel vol.15, pp.5, 2016, https://doi.org/10.14773/cst.2016.15.5.226
  2. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070713
  3. The Effect of the Static Load in the UNSM Process on the Corrosion Properties of Alloy 600 vol.12, pp.19, 2019, https://doi.org/10.3390/ma12193165
  4. Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600 vol.18, pp.5, 2015, https://doi.org/10.14773/cst.2019.18.5.196