• Title/Summary/Keyword: 스퀼

Search Result 95, Processing Time 0.021 seconds

Investigation of Brake Squeal with Contact Stiffness Variation Using Experiment and FE Simulation (패드 접촉강성 변화에 따른 FE스퀼해석법 및 실험 검증)

  • Park, Kiwan;Nam, Jaehyeon;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, squeal noise with respect to pressure variation is measured by a lab-scaled brake dynamometer and estimated by a complex finite element (FE) eigenvalue analysis. From the FE eigenvalue sensitivity analysis, unstable frequencies occur due to a mode-coupling mechanism and are found to change with variation in contact stiffness. In the experiment, squeal frequencies near 1 kHz, 2.5 kHz, 3.5 kHz, and 4 kHz are increased with pressure variation. The sensitivity of squeal modes to contact stiffness variation obtained from the FE analysis is shown to approximate the variation of squeal frequencies under pressure variation in the experiment.

Measurement and Analysis of Automative Wiper Blade Squeal Noise Generation Mechanism (자동차 와이퍼 스퀼 소음의 발생, 측정 및 분석)

  • Min, Dong-Ki;Jeong, Seong-Bin;Yoo, Hong-Hee;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.598-598
    • /
    • 2010
  • 와이퍼 작동 중에 발생하는 진동소음 중 1000Hz 이상의 스퀼 소음은 발생 메커니즘이 정확하게 알려지지 않았으며 발생하는 조건도 불규칙하다. 이 스퀼 소음의 발생 빈도 및 주파수를 변경하는 설계를 위하여 스퀼 진동 소음의 발생 메커니즘의 원인분석이 우선적으로 이루어져야 한다. 이 논문에서는 자동차 와이퍼 시스템에서 워셔액을 분사하였을 때 발생하는 스퀼 소음을 측정하고 인자 별로 분석하였다. 스퀼 소음이 발생하는 인자들을 마찰계수와 연관이 있는 인자, 기하학적인 인자, 와이퍼의 운동과 관련된 인자들로 나누어 분석하였다. 실제 와이퍼 시스템을 구현하기 위하여 모터와 원판 지지대 등을 이용하였고, 마이크로폰, 레이저 바이브로미터, 노이즈북, 아르테미스를 이용하여 측정 및 분석하였다.

  • PDF

Squeal Test Using Lab-Scale Brake Dynamometer for Pad Angle and Negative-slope (랩스케일 브레이크 다이나모 메터를 이용한 패드각도 및 음의 기울기에 따른 스퀼 소음 실험 연구)

  • Nam, Jae-Hyun;Cho, Byung-Jae;Kang, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3158-3163
    • /
    • 2013
  • In this study, squeal noise test was conducted by using the lab-scaled brake dynamometer. Squeal conditions with respect to the angle of the brake pads ($34^{\circ}30^{\circ}26^{\circ}$) and negative slope, were studied. Squeal frequency of the In-plane-like mode was confirmed by hammering test and finite element analysis. This Squeal mode was difficult to control by the pad angle variation. Also the squeal sound was found to be periodic signal which has higher harmonic components. Squeal noise is independent of the negative slope. It implies that squeal noise can reach the stick-slip oscillation.

Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model (스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구)

  • Kang, Jaeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6406-6411
    • /
    • 2014
  • This paper presents the analytical-FE (finite element) squeal model, which can provide the efficient simulation time and accuracy. The system geometry and the extraction of the vibration modes were constructed using the finite element method. Instead, the friction contact model was derived from theoretical contact kinematics of the rotating disc and the stationary pads. This modeling procedure was incorporated into the perturbed equations of motion based on the finite elements of the system. Throughout the analytical-FE squeal model, the accuracy of linear stability analysis and the simulation time of FE squeal analysis were improved. In addition, the sensitivity of contact stiffness on brake squeal and the mode-coupling mechanism were provided by the system parameter study.

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Effects of Pressure-Side Winglet at an Elevation of Tip Surface on the Tip-Leakage Flow and Aerodynamic Loss Downstream of a Turbine Blade Equipped with Pressure-Side Squealer Tip (압력면익단소익이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향)

  • Cheon, Joo Hong;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.645-651
    • /
    • 2016
  • Effects of pressure-side winglet width on the tip leakage flow and aerodynamic loss downstream of a turbine blade with a pressure-side squealer rim have been investigated for the tip gap-to-span ratio of h/s = 1.36%. The pressure-side squealer has a fixed height-to-span ratio of $h_p/s=3.75%$ and the pressure-side winglet, which is installed at an elevation of tip surface, has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results show that with increasing w/p, aerodynamic loss in the passage vortex region decreases, whereas that in the leakage flow region increases. As a result, the mass-averaged loss coefficient all over the measurement plane tends to decrease minutely with the increment of w/p. It is concluded that the pressure-side winglet for the pressure-side squealer tip can hardly contribute to the tip-leakge loss reduction.

Effect of Contact Stiffness on Brake Squeal Analysis Using Analytical FE Squeal Model (스퀼 융합모델을 이용한 접촉부 강성인자에 따른 브레이크 스퀼 영향도 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.749-755
    • /
    • 2014
  • The analytical-finite element(FE) squeal model is applied to investigate the squeal propensity associated with contact stiffness of the disc brake system. The system contact stiffness is incorporated into the perturbed equations of motion in the analytical manner where the brake components are modeled by FE method. The results show that the contact stiffness of the friction material and the contact stiffness between the pads and caliper are the influential factors on the squeal propensity. Particularly, the modal instability of the 3200 Hz squeal mode drastically changes with respect to the contact stiffness between the pads and caliper.

Experimental Analysis on Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음의 실험해석)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.118-124
    • /
    • 2004
  • To investigate the mechanics of brake squeal noise, the sound and vibration of an actual brake system was measured using a brake dynamometer. The experimental results show that disk run-out due to the misalignment of brake disk varies with brake line pressure and becomes the important factor of brake squeal noise generation. Also, it was confirmed that the frequency of the squeal noise equals to the natural frequency of the disk bending mode.

An Experimental Study on the Squeal Noise for Subway (지하철 스퀼소음에 대한 실험적 연구)

  • 문경호;유원희;김재철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.536-541
    • /
    • 2003
  • When a rail vehicle transverses tight curves, it often emits an intense, high-pitched squeal. This squeal has always been noticed as one of the most disturbing noise sources of railway systems. At present, w cannot predicted squeal noise that is influenced by a large number of dependent parameters. In this study, we performed structural analysis to find out the frequency of the wheel and measured squeal noise at Seoul subway. We also tested reduction effectiveness of squeal noise through rail lubricator

  • PDF

A Study on the Squeal Noise for Subway (지하철 스퀼소음에 관한 연구)

  • 문경호;유원희;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.209-214
    • /
    • 2003
  • When a rail vehicle transverses tight curves, it often emits an intense, high-pitched squeal. This squeal has always been noticed as one of the most disturbing noise sources of railway systems. At present, we cannot predict squeal noise that is influenced by a large number of dependent parameters. In this study, we performed structural analysis to find out the frequency of the wheel and measured squeal noise at Seoul subway. We also tested reduction effectiveness of squeal noise through rail lubricator.