• Title/Summary/Keyword: 스마트 차량

Search Result 441, Processing Time 0.027 seconds

A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique (CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구)

  • Lim, Seung-Cheol;Go, Jae-Seung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • The Korea Highway Traffic Authority provides statistics that analyze the causes of traffic accidents that occurred since 2015 using the Traffic Accident Analysis System (TAAS). it was reported Through TAAS that the driver's forward carelessness was the main cause of traffic accidents in 2018. As statistics on the cause of traffic accidents, 51.2 percent used mobile phones and watched DMB while driving, 14 percent did not secure safe distance, and 3.6 percent violated their duty to protect pedestrians, representing a total of 68.8 percent. In this paper, we propose a system that has improved the advanced driver assistance system ADAS (Advanced Driver Assistance Systems) by utilizing CNN (Convolutional Neural Network) among the algorithms of Deep Learning. The proposed system learns a model that classifies the movement of the driver's face and eyes using Conv2D techniques which are mainly used for Image processing, while recognizing and detecting objects around the vehicle with cameras attached to the front of the vehicle to recognize the driving environment. Then, using the learned visual steering model and driving environment data, the hazard is classified and detected in three stages, depending on the driver's view and driving environment to assist the driver with the forward and blind spots.

Study on the Integration of MMS and Airborn Survey Data for the Implementation of Precise Road Spatial Database (정밀도로공간정보 구축을 위한 지상 MMS 측정자료와 항공측량자료의 결합방법 연구)

  • Hwang, Jin Sang;Kim, Jae Koo;Yun, Hong Sik;Jung, Woon Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Due to the introduction of various IT devices, including the recently smartphones and the widespread use of the car navigation system to the location-based information service space has been increased. Spatial information users have been requiring higher levels of quality. In this paper, we study how to build accurate three-dimensional space information by integrating MMS(Moblie Mapping System) survey and airborne survey data. Thus, to analyze the tendency of deviation between the MMS survey and airborne survey data observed in the experimental region, the deviation tendency of the data, it was confirmed that was not consistent. Deviation correction model to select how to change the georeferencing information directly contained in the GPS/INS processing results for the determination, classifies the standard is a method for acquiring the correction reference point coordinates using the calibration model, and analyzed their advantages and disadvantages. With the information of the reference point obtained by airborne photograph of a project, using the method of correcting the MMS survey data. Not only clear the deviation existing between the MMS survey data, it was possible to confirm that the deviation exists between the airborne survey data and MMS survey data was also almost erased.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Comparison of Pixel-based Change Detection Methods for Detecting Changes on Small Objects (소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석)

  • Seo, Junghoon;Park, Wonkyu;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.177-198
    • /
    • 2021
  • Existing change detection researches have been focused on changes of land use and land cover (LULC), damaged areas, or large vegetated and water regions. On the other hands, increased temporal and spatial resolution of satellite images are strongly suggesting the feasibility of change detection of small objects such as vehicles and ships. In order to check the feasibility, this paper analyzes the performance of existing pixel-based change detection methods over small objects. We applied pixel differencing, PCA (principal component analysis) analysis, MAD (Multivariate Alteration Detection), and IR-MAD (Iteratively Reweighted-MAD) to Kompsat-3A and Google Map images taken within 10 days. We extracted ground references for changed and non-changed small objects from the images and used them for performance analysis of change detection results. Our analysis showed that MAD and IR-MAD, that are known to perform best over LULC and large areal changes, offered best performance over small object changes among the methods tested. It also showed that the spectral band with high reflectivity of the object of interest needs to be included for change analysis.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

Analysis of Safety and Mobility of Expressway Land Control System (길어깨차로제 시행에 따른 안전성 및 이동성 분석)

  • Park, Sung-ho;Lee, Yoseph;Kang, Sungkwan;Cho, Hyonbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.1-19
    • /
    • 2021
  • The domastic hard shoulder running(HSR) System has been gradually expanding since its initial implementation in September 2007 with the aim of increasing capacity and resolving congestion. Hard Shoulder is used as a space for driver's visual comfort and a place for vehicles to evacuate in case of emergency, but it is replaced by a space for driving when the HSR System is implemented. Therefore, it was intended to determine the improvement effect before and after implementation of the HSR system through safety analysis and mobility analysis. The safety analysis analyzed the impact of traffic accidents by comparing HSR sections and similar sections. The mobility analysis was to determine the improvement effect by quantifying the speed and traffic volume changes before and after HSR System implementation. According to safety yanalysis, there is no effect of reducing traffic accidents when implementing the HSR System. In mobility analysis, the implementation of the HSR System significantly improved the speed of traffic during peak hours and significantly reduces slow and delay hours.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm (CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구)

  • Lee, Hoo-Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.33-39
    • /
    • 2021
  • Speech recognition technology is being combined with deep learning and is developing at a rapid pace. In particular, voice recognition services are connected to various devices such as artificial intelligence speakers, vehicle voice recognition, and smartphones, and voice recognition technology is being used in various places, not in specific areas of the industry. In this situation, research to meet high expectations for the technology is also being actively conducted. Among them, in the field of natural language processing (NLP), there is a need for research in the field of removing ambient noise or unnecessary voice signals that have a great influence on the speech recognition recognition rate. Many domestic and foreign companies are already using the latest AI technology for such research. Among them, research using a convolutional neural network algorithm (CNN) is being actively conducted. The purpose of this study is to determine the non-voice section from the user's speech section through the convolutional neural network. It collects the voice files (wav) of 5 speakers to generate learning data, and utilizes the convolutional neural network to determine the speech section and the non-voice section. A classification model for discriminating speech sections was created. Afterwards, an experiment was conducted to detect the non-speech section through the generated model, and as a result, an accuracy of 94% was obtained.

Locational Characteristics of Highly Pathogenic Avian Influenza(HPAI) Outbreak Farm (고병원성 조류인플루엔자(HPAI) 발생농가 입지특성)

  • KIM, Dong-Hyeon;BAE, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.140-155
    • /
    • 2020
  • This study was conducted to identify the location characteristics of infected farms in the areas where livestock diseases were clustered(southern Gyeonggi-do and Chungcheong-do), analyze the probability of disease occurrence in poultry farms, find out the areas corresponding to the conditions, and use them as the basis for prevention of livestock diseases, selection of discriminatory prevention zones, and establishment of prevention strategies and as the basic data for complementary measures. The increase of one poultry farm within a radius of 3-kilometers increases the risk of HPAI infection by 10.9% compared to the previous situation. The increase of 1m in distance from major roads with two lanes or more reduces the probability of HPAI infection by 0.001% compared to the previous situation. If the distance of the poultry farm located with 15 kilometers from a major migratory bird habitat increases by 15 to 30 kilometers, the chance of infection with HPAI is reduced by 46.0%. And if the distance of the same poultry farm increase by more than 30 kilometers, the chances of HPAI infection are reduced by 88.5%. Based on the results of logistic regression, the predicted probability was generated and the actual area of the location condition with 'more than 15 poultry farms within 3km a radius of, within 1km distance from major roads, and within 30km distance from major migratory birds habitat was determined and the infection rate was measured. It is expected that the results of this study will be used as basic data for preparing the data and supplementary measures when the quarantine authorities establish discriminatory quarantine areas and prevention strategies, such as preventive measures for the target areas and farms, or control of vehicles, by identifying the areas where livestock diseases are likely to occur in the region.