• Title/Summary/Keyword: 스마트 무인 항공기

Search Result 60, Processing Time 0.02 seconds

Design of Control Mixer for 40% Scaled Smart UAV (스마트무인기 축소모형의 조종면 혼합기 설계)

  • Gang, Yeong-Sin;Park, Beom-Jin;Yu, Chang-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.240-247
    • /
    • 2006
  • Tilt rotor aircraft is a multi-configuration airplane which has three independent flight modes; helicopter, conversion, and aiplane. The control surface mixer resign is reqctired to generate and distribute efficient control forces and moments in each flight mode. In the conversion mode, the thrust vector is changed from helicopter mode to airplane, therefore the thrust vector makes undesired forces and moments which affect on pitch, roll and yaw dynamics. This paper describes the design results of control surface mixer design which minimize the undesired forces and moments due to nacelles tilting angle change for 4O% scaled model.

  • PDF

Verification of GPS/INS for the SmartUAV using Aircraft Flight Test and Automobile Road Test (스마트무인기 위성관성항법장치의 비행시험 및 차량시험을 통한 검증)

  • Chang, Sung-Ho;Yoo, Jang-Sik;Gwak, Min-Gyu;Hong, Jin-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • This is a comparative study of three inertia navigation units and focuses on the verification of reliability about GPS/INS for the SmartUAV(DGNS). Those GPS/INS have been tested using a manned aircraft and an automobile. The comparative aspect of units include details about the GPS positions and the inertia sensor performance. With the flight scenario, the DGNS guarantees the reliability of the navigation operation and performs the flight test for the development of the SmartUAV.

A Study on the Development of Airworthiness Standards for VTOL UAS (수직이착륙(VTOL) 무인항공기 감항기준 개발에 대한 연구)

  • Gil, Ginam;Yoo, Minyoung;Park, Jongsung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • In conjunction with the Fourth Industrial Revolution, the unmanned aerial vehicle industry is being developed to a new paradigm by combining advanced technologies such as AI, Big Data and the IoT. Aeronautical developed countries such as the U.S. are focusing their efforts on the development of the safer unmanned aerial vehicles. The Korea Aerospace Research Institute, as part of the national R&D project in 2011, had succeeded in developing the first vertical takeoff and landing (VTOL) UAS, called Smart-UAV. However, although the development technology of the VTOL UAS is possessed, developing and operating of the VTOL UAS for commercial or military use are limited. The type certification procedure of the VTOL UAS developed by domestic technology is stipulated in the Korean Aviation Safety Act, but the Korean VTOL UAS airworthiness standards (KAS) hsve not been established. Thus, this study investigated the development trends of the VTOL UAS in Korea and abroad and national certification systems and procedures, and benchmarked the special conditions for the VTOL aircraft, announced by the EASA on July 2, 2019, to establish standards for type certificate of the VTOL UAS in Korea.

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

Ground Test of Smart UAV Propulsion System (스마트무인기 추진장치 지상시험)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.533-536
    • /
    • 2009
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the rotational speed of proprotor. In this paper, the engine status data from ground test of Smart UAV, such as the relationship of PLA vs. Gas generator speed and power are compared with the result of engine performance calculation program.

  • PDF

Design and Application of the Warfighting Experiment Process Using the Intelligent Maturity Model in Software Intensive Systems (지능형 성숙도 모델을 이용한 소프트웨어 집약 시스템의 전투실험 프로세스 설계 및 적용)

  • Kang, Dong-Su;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.668-673
    • /
    • 2007
  • We propose the design of the warfighting experiment process for software intensive systems using the intelligent maturity model and suggest the application results of the target searching capability in smart UAV. For this, we design the intelligent maturity model to evaluate the intelligent degree of the software intensive systems considering the domain and intelligent level. Then we classify the IS0/1EC-12207 process and CMMI process as LITO domain for designing the warfighting experiment process, map the classifed process to the five factors of the warfighting experiment and derive the process as warfighting experiment element and phase. Based on the derived process, we design the warfighting experiment process using the IDEF0. Finally we apply the proposed process to the target search capability and suggest the results which are required to develop and acquire the smart UAV.

Smart UAV Aft Fuselage Structural Analysis (스마트무인기 후방동체 구조해석)

  • Kim, Jin-Won;Lee, Sang-Uk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2006
  • In this report Smart UAV structural analysis of the aft fuselage is presented. Aft fuselage needs to have enough strength and stiffness considering loads of the Vertical and Horizontal Stabilizer together. It has a big hole for the purpose of engine exhaust duct on its side body. In addition, much attention is needed in high temperature region due to material strength deterioration.

  • PDF

Mount Location Simulation of UHF-Band Omni-Directional Antenna for Smart UAV (스마트무인기용 UHF-Band 무지향성 안테나의 탑재위치 시뮬레이션)

  • Song, Bok-Sob;Lee, Hyeon-Cheol;Kim, Seung-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.982-989
    • /
    • 2013
  • Omni-directional antennas of UHF-Band are located on the top and bottom side of the Smart UAV in order to connect a link always. Therefore one of each antennas should be connected to a ground antenna. Because the communication link of the omni-directional antennas is influenced by the objectives around aircraft, the clearance of LOS(Line of Sight) should be achieved in order to avoid a loss of link. In this paper, the analysis results on the influence of the complex objectives placed around the antenna on the communication link are presented according to the change of attitude angles. The best positions of antennas are selected based on the electromagnetic analysis using XGTD tool which supports the modeling of antenna pattern. The flight tests of the Smart UAV were successfully performed with the selected antenna position.

COTS Based Air Data Recording System for SmartUAV (상용 기성품에 기반한 스마트무인기 탑재자료저장장치)

  • Chang, Sung-Ho;Kim, Young-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • Air Data Recording System (ADRS) is the flight data recorder for the SmartUAV development. ADRS of the low cost designed for the SmartUAV has been developed and tested through the ground test. ADRS is the reconstructing data acquisition system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and software. The hardware aspects of the ADRS include details about the hardware configurations for the interfaces with the Digital Flight Control Computer(DFCC) and sensors, components modifications. The software section describes the ADRS Operating System(OS) and data flow for archived files. Finally, ADRS-based results of the SmartUAV that include the Iron-bird test, system interface test and ground test are presented.