The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.
Journal of the Earthquake Engineering Society of Korea
/
v.1
no.2
/
pp.1-15
/
1997
This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.
구조물의 동적계수 추정방법과 이에 관련된 몇가지 사항들에 대해서 기술하였다. 여러 문제들중 가장 중요한 것이라고 생각되는 것으 소음에 대한 처리문제라고 여겨진다. 순차적 예측오차법과 같은 비선형 최적화기법을 사용하여 측정오차와 관련된 소음영향은 어느정도 처리되어질 수 있다고 생각되나, 많은 자유도를 가진 실제구조물의 거동을 간단한 모형식으로 나타냄으로써 야기되는 모형화 오차에 대해서는 아직 그 처리방법에 상당한 난점이 있다. 앞으로 이에 대한 많은 연구가 요구되는 실정이다.
This paper proposes methodologies for analyzing the accuracy of the proportional hazards model in predicting consecutive break times of water mains and estimating the time interval for economical water main replacement. By using the survival functions that are based on the proportional hazards models a criterion for the prediction of the consecutive pipe breaks is determined so that the prediction errors are minimized. The criterion to predict pipe break times are determined as the survival probability of 0.70 and only the models for the third through the seventh break are analyzed to be reliable for predicting break times for the case study pipes. Subsequently, the criterion and the estimated lower and upper bound survival functions of consecutive breaks are used in predicting the lower and upper bounds of the 95% confidence interval of future break times of an example water main. Two General Pipe Break Prediction Models(GPBMs) are estimated for an example pipe using the two series of recorded and predicted lower and upper bound break times. The threshold break rate is coupled with the two GPBMs and solved for time to obtain the economical replacement time interval.
시벼형 신호인 음성 신호의 분석에 칼만필터를 이용하였다. 일반적인 음성 분석은 프레임단위의 처리방법인 선형 예측 부호화 기법을 주로 이용하지만 음성의 시변 특성을 파악하는데에는 적절하지 못 하다. 따라서 순차적인 추정기법으로 많이 이용되는 칼만 필터를 음성 분석에 적용하였다. 또한 음성과 같은 시변신호에서는 과거 신호의 잡음의 분산값에 적당한 가중치를 부가하므로써 과거의 신호에 의해 서 현재의 추정값에 미치는 영향을 줄였으며 이를 음성의 천이 구간에서의 파라메타 추정에 사용하였 다. 그리고 음성신호 모델에서 생기는 모델링 오차는 일반적으로 백색 가우시안 잡음으로 가정하고 있 으나 이는 자음과 같은 무성음에서 특징 파라메타 푸정에는 오차가 적지만 모음등의 유성음에서는 음성 발생시의 여기신호인 펄스열에 의해서 많은 모델링 오차를 생기게 한다. 따라서 모델링 오차신호는 Non-Gaussian 확률분포로 가정한 후 로버스트 칼만 필터를 사용하여 합성으멩 대해 특징 파라메터를 추출하였다.
Proceedings of the Computational Structural Engineering Institute Conference
/
1990.10a
/
pp.79-84
/
1990
The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.
As for the safety evaluation of existing large-scale structures, methods for the estimation of structural and dynamic properties are studied. Sequential prediction error method in time domain and frequency response function estimators in frequency domain are examined. For this purpose, impact tests are performed on a steel frame structure with 2 bays and 3 floors. Results from both methods are found to be consistent to each others. However those from the finite-element analysis are slightly different from the experimental results. The discrepancies may be caused by the improper modeling of the complex behavior at the connection joints of the model structure.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.458-459
/
2021
Recently, researches using deep learning technology based on Wi-Fi fingerprints have been conducted for accurate services in indoor location-based services. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. At this time, continuous sequential data is required as training data. However, since Wi-Fi fingerprint data is generally managed only with signals for a specific location, it is inappropriate to use it as training data for an RNN model. This paper proposes a path generation method through prediction of a moving path based on Wi-Fi fingerprint data extended to region data through clustering to generate sequential input data of the RNN model.
This paper introduces a noble modeling technique to build data communication prediction models in multiprocessors, using Least-Squares and Robust Estimation methods. A set of sample communication rates are collected by using a few small input data sets into workload programs. By applying estimation methods to these samples, we can build analytic models that precisely estimate communication rates for huge input data sets. The primary advantage is that, since the models depend only on data set size not on the specifications of target systems or workloads, they can be utilized to various systems and applications. In addition, the fact that the algorithmic behavioral characteristics of workloads are reflected into the models entitles them to model diverse other performance metrics. In this paper, we built models for cache miss rates which are the main causes of data communication in shared memory multiprocessor systems. The results present excellent prediction error rates; below $1\%$ for five cases out of 12, and about $3\%$ for the rest cases.
Journal of rehabilitation welfare engineering & assistive technology
/
v.5
no.1
/
pp.59-64
/
2011
In this paper, the lumped element model parameter estimation method and its implemented estimation software for fabricated floating mass transducers of IMEHDs have been presented so that the estimated parameter values could be compared with the designed ones and applied to predict the output performance when the transducers were implanted into human ears. The presented method is based on the sequential quadratic programming (SQP) for estimating parameters in the transducer's lumped model and has been implemented by the use of LabVIEW graphical language. Using the implemented estimation software, the accuracy of parameter estimation has been verified and our implemented estimation method has been evaluated by the comparison of the estimated transducer parameter values with the designed ones for a practically fabricated floating mass transducer for IMEHDs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.