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Speech analysis using the Robust Time-Weighted
Kalman filtering
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ABSTRACT

tn this paper time-varying speech signal is analyzed by using the Kalman filtering methods. In general assuming
that the speech process could be stationary in short time duration, frame-based analysis method, such as LPC{Lin-
ear Predictive Coding), SSLPC{Sample Selective LPC), has been utilized to obtain the useful information of speech
signal, which 15, however. not suitable for applying to the time-varying signal, Kalman filtering is generally con-
sidered to be an appropriate means for estimation of the time-varying AR{Autoregressive) speech model, Now we
consider two limiting factors in using the conventional analysis method, Furst the familiar Kalman filter procedure
has a infinite memory which degrades the ability of adaptive estimation of rapid changing parameter in the current
speech. In addition to infinite memory effect, the second is that the sequential Kalman filtering method poorly
estimates the parameter coefficients when periodic impulse trains are the excitation source, as in voiced speech.
Therefore we propose the robust Kalman filter with time-weighted-error criterion which is applied to analyze the

synthetic speech signal.
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I. Introduction speech production model from observed speech

signals only have been developed in speech analy-

Several methods for estimating parameters of a sis, In the linear prediction analysis, the speech
A 2o 8 Fobo) & A b gt production process is assumed to be stationary.

Accordingly, for any rapid variation of underlying
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system parameters or excitation signals. such as
stop consonants, fricative onsets, and transition
between consonants and vowels, accurate par-
ameter estimation cannot be obtained. Kalman
filtering is generally considered to be an effective
means of estimating the time-varying coefficients
of an AR {autoregressive) speech model, since
they overcome some drawbacks of frame-based
analysis method!!), The state-space represen-
tation is well suited to sequential estimation,
However, the initial application of Kalman
filtering methods has an mfinite memory so that
its ahility to adapt to rapid changes in the current
speech is affected by the entire history of the
signal. So we used a concept of fading memory
filter which was first developed for control state
estimation!?). And the familiar Kaiman filter the-
ory involoved the use of ideal assumption of the
linear system and white noise process for the esti-
mation of the coefficients for speech model. In
other words, the sequential Kalman filtering
methods produce poor coefficient estimates when
pericdic impulse trains are the excitation source,
as 1n voiced sounds.

In this paper, we propose a method that is
designed to enhance the accuracy of the par-
ameter estimation by the robust Kalman filter
which assigns less weight to the small portion of
large residuals so that the outliers will not ter-
ribly influence the final estimate, whiie giving
unity weight to the bulk of small to moderate
residuals, The above procedure takes into ac-
count the non-Gaussian nature of the source exci-
tation for voiced speech by assuming that the
innovation is from a mixture distribution, Ex-
periments were performed using synthetic speech
with transition region between vowel and conson-

ants,

II. Kalman filter with time-weighted error cri-
terion :

We will assume that speech can be adequately
modeled by an AR model represented by the fol-

lowing equation ;

SRI=3 ailkSs(k- i) +elk) ()

where afk) are time varying coefficients and ¢
{#£) represents the error signal.

Assuming the predictor coefficients are con-
stant over an analysis interval (during the closed
glottis interval), parameter estimation problem
for the system (1) is represented in state-space

notation as follows,

a(R)=Qralk 1) (2)

Sk)I=s"Tk~ 1)alk)+ (k) (3)
where af%} is the p-dimensional parameter vec-

tor and s(4—1) is the p-dimensional vector of past
observations, which are respectively given,

aifk) sfk-1)
a(k}= {J!I(k) k- f}: b(k_2)
aplk) stk p)

(k) has the variance £[efklef(j))=nd: where n
is assumed to be known,

®: is the time-varying parameter transition
matrix from 4 1 instant to 4 instant, which is
assumed to be the identity matrix in most
applications.
Then time-weighted Kalman filter is derived as
follows,
The usual least-square error criterion can be
given as

= )T
T+ T fs(i)-s"(i Iai)R "

Thus we consider the time-weighting in such a
way that the error criterion is weighted so as to
decrease the importance of past samples, in other
words, backwards increasing the variance r of
the measurement noise ¢ft), Therefore now define

J«as a new error criterion, such that

Ju= i o An s ST Lafip (s)

]
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where ¢ is a weighting constant, ¢>1, An ex-
pression for the time-weighted Kalman filter al-
gorithm under the new error criterion can be
stated as follows!?),

alk)=Qsalk— 1) (6)
alk)=alk)+ kev(k) (7)
v(k)=s(k)—sT(k— 1)alk) (8)
ke=Mus(k- 1){s'(h—1D)Mis(k - D4n/ ! (9)
Mi=cOiPr 17 {10)

P=FE((alk)—-alk)alk)—a(t)T]
=Mr—hkas'(k— 1)M: (11

where the coefficients ek} afk) are the predicted
value at &£— 1 instant and the estimated value at %
instant, respectively, and P« is the estimation er-
ror covanance,

1. Robust Time-Weighted Kalman Filter for the
Non-Gaussian noise process

In general, the distribution probability density
of e} in system (1) is not known precisely, but
it is easy to find that the error 1s composed of
two parts:one is the error due to fitting vocal
tract structure by improper model parameters as
well as random noise interferences, This error can
be considered as a Gaussian process with a rela-
tively small variance, which exists everywhere in
speech signals, Another error components due to
glottal source excitation usually appears as a few
impulses, and is essentially a non-Gaussian pro-
cess with a much larger variance,

Thus the error ef¢} can be assumed to have a ¢
-contaminated Gaussian mixture distribution as
follows,

Je=(1=)N( < 10,1}+eN( - 10, 0.2) (12)

where Mx/p, ¢?) is a normal density with
mean p and variance ¢? and ¢ is the mixing par-
ameter {0<&<1). The ¢-contaminated normal
mixture density 15 also classified as the term
heavy-tailed densities which we mean any distri-
bution whose tail is heavier than some nominal
Gaussian distribution, However the fact is well
known that the behavior of linear least squares
estimates can be quite bad when plant or obser-
vation noise are non-Gaussian, particulary when
the non-Gaussian is of a heavy-tailed variety giv-
ing rise to occasionally very large values's), Far
situations in which large disturbances occur in-
frequently and at random times, it would be de-
sirable to use a robust Kalman filter which is
more or less desensitized to the influence of
heavy-tailed distributions, Before proceeding
further we present a brief recap on min-max ro-
bust stochastic approximation (SA) estimation.

Let T be a class of estimates, Q a class of
distributions, and V(7.F) the asymptotic variance
of T€l when the distribution is FEQ. If Es and
Fo satisfy

min max VIT.F)=V(Fo,To) = max min V(T F),

e 31! ren 1er

{13)

we refer to Eo as a min-max robust estimate, Fo is
referred to as the least favorable distribution!®!,
And SA-estimates are based on Robbins-Monro
type stochastic appreximation algoerithms of the

form,

Te=Ta 1+ S0(u-10 0, (14)

where ¢ is an appropriate gain constant and ¥
f-) is an appropriate influence function,
Selecting the influence function is important be-
cause the robustness properties totally depends
upon the choice of the influence function. In the
literature, there are many functions developed.
Among them we can consider well known influ-
ence functions defined by
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! <K
Welt) =
/ { K-sgn(t) [tI>K {15)

with K depending upon ¢,

Wo1) = { gj»_m [ 253}» ] I <ys
tan [2—15]
o sgi(t) RISy, (16)
The effect of using an influence function is to as-
sign less weight to the small portion of large
residuals so that the outliers will not terribly in-
fluence the final estimate, while giving unity
weight to the bulk of small or moderate residuals,
Since conventional Kalman filter weights all the
residuals equally, the large variance process will
dominate the estimation accuracy. For non-
Gaussian obsrvation noise and Gaussian plant
noise, the estimation of af#) can be solved by ro-
bust Kalman filter with influence function Ws(t/ in
(16) for the residual process with density which
goes like cos(t) in the middle and has exponential
tails. The algorithm is expressed as follows [4] :

afk)=Oralk— 1) (17)

alk)=alk) + Mis'(k)¥{S(k)—sT(k— La(k); (18)
Mi=c®: Py 104 (19)

Pr=Me— MrsT(h)s(h )MeEr¥V ' [s(k)—sT(k— Llalk}]
(20)

Ert¥ s (Wi=(s - yp) 2 {1—pl1+tand -5} (2D)

where y is defined by & - y;) = 4 and p=0.317,
s=0.67.

IV. Experimental results :

In order to assess the validity of the proposed
methods, the speech analysis system was
stmulated con a digital computer. The synthetic
speech signal is created by an all-pole filter

{p=8) with known time-varying coefficients
excited by an impulse train of 100 samples period.
The coefficients during a transition interval are
varying in a linear interpolation fashion. The
speech signal is deemphasized by a simple one
pole filter to add the glottal effects. And it was
sampled at a frequency of 10 KHz. The analysis
interval was set at 25.6ms {256 samples). In this
simulation the following values are used :

D=1,
a(0/=0,

100 0
Po = [ e ]
0 100 '

n=1.0,

¢ is decided according to the experimental results
between 1< <2,

In order to quantitatively evaluate the esti-
mation error of the spectral envelope obtained by
the robust Kalman method and the conventional
Kalman method we use the following spectral dis-
tortion measures :

- ’. -
b= \/T{ ;( 10logio f{coi} — 10logmw f (wi})?

where f (¢;) denote estimated spectral densities
obtained by the proposed method. The frequency
range corresponding to half of the sampling fre-
quency (i.e, 10 KHz) is divided into L (ie.
1=80) equal frequency portions. And Fig.l
shows the comparison of the performance of the
robust time-weigted Kalman filter (RTKF) aigor-
ithm and that of conventional Kalman filter
(CKF) algorithms with noise-free synthetic
speech signal. The spectral estimation accuracy
of the robust time-weighted Kalman filter is su-
perior to that of other method. Especially in the
transition region (100-150 samples), RTKF algor-
ithm perform better than CKF algorithm. Note
also, however, the estimation accuracy are a little
degraded in the transition region than in steady

state region.
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Fig. 1. the comparison of the performance of the ro-
bust time-weigted Kalman filter (RTKF) algor-
ithm and conventional Kalman filter (CKF)
algorithms,

V. Conclusion :

We have presented the effect of a robust Kalman
filter with time-weighted criterion on the time-varying
spectral estimation performance, Using the robust
concept in the statistic field, a new Kalman filter is
designed to have the ability to be less sensitive to the
non-Gaussian noise, And the robust Kalman filter is
modified to easily track the parameter variation by
adopting a fading memory means, We find that the
proposed method has the good simulation results es-
pecially in time-varying transition region,

100 150 200 250 300
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