• Title/Summary/Keyword: 수확시기 조절

Search Result 147, Processing Time 0.022 seconds

Effect of Cultivation Method, Harvest Season and Preservative Solution on the Quality and Vase Life of Cut Rose 'Rote Rose' (롯데로제 장미의 재배방법, 수확시기 및 보존제 종류가 절화 품질과 수명에 미치는 영향)

  • Cho, Mee Sook;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experiments were conducted to evaluate quality and vase life of cut rose 'Rote Rose' cultivated in soil or hydroponically in rockwool. Rose flower stems harvested in commercial greenhouses in Kimhae on May 27 and June 14, 1998 were transported for about two hours to a laboratory and recut in water to an uniform stem length of 45cm. The rose flowers harvested on the same day were displayed at a density of $10cm{\times}10cm$ and were subjected to the same environmental conditions in a growth chamber. The stems were put in four different preservative solutions, 0.5% Chrysal RVB, BS (2% sucrose+200ppm 8HQS+0.3% Chrysal RVB), Sonk1 (BS+0.1mM ethionine), and double distilled $H_2O$. Flower stems harvested on May 27 were displayed at $18{\pm}1^{\circ}C$, RH 60-70%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Flower stems harvested on June 14 were displayed at $25{\pm}1^{\circ}C$, RH 70-80%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Fresh weight and flower diameter were affected by cultivation method, and were greater in hydroponically-grown roses than in soil-grown roses. Among the preservative solutions, BS and Sonk1 were superior to Chrysal RVB in terms of prolonging vase life. Vase life extension in Chrysal RVB, BS and Sonk1 over the control was about one day in both display temperatures. At $18^{\circ}C$ vase life was maintained for three to four additional days as compared to that at $25^{\circ}C$.

  • PDF

Beneficial Effect of Heat Fans on Quality and Yield of Korean Melon Cultivated in Greenhouses at Winter Season (히터팬 처리가 저온기 하우스 참외의 품질 및 수량에 미치는 긍정적 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Oh, Su Whan;Cheung, Joung Do;Sohn, Hyoung Rac;Do, Han Woo;Kim, Mi Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • The purpose of this study was to investigate the changes of environmental conditions and the quality and yield of melon fruit by heat fan operation in greenhouses at winter season. The average daily temperature inside the tunnels during January 1 to 31, 2017 was $0.9^{\circ}C$ higher than that of the control $17.8^{\circ}C$. The air flow rate of heater fan treatment was 4.8 times higher than the control (untreated $0.05m{\cdot}s^{-1}$) at 20cm above the ground where the korean melon grew. The temperature of the heater pan was $5.6^{\circ}C$ higher than that of the untreated at $35.3^{\circ}C$ and the relative humidity was 8.1% lower than that of the untreated at 39.1%. The flowering rate of the heater fan treatment was 96%, 5% higher than the control. The number of first harvest days of heater fan treatment was shortened by 4 days than that of untreated treatment. Fruit quality and marketable fruit yield increased by 3.4% and 38% compared to untreated respectively, the heater fan treatment increased the temperature inside the greenhouse and air flow rete, which were beneficial for growing the korean melon in greenhouses at winter season.

Bush Growth and Yield of Highbush Blueberry 'Duke' as Influenced by Different Pruning Times in Unheated Plastic House (블루베리 '듀크' 품종의 무가온 시설재배시 전정시기가 수체생장과 과실수량에 미치는 영향)

  • Cheon, Mi Geon;Lee, Seo Hyoun;Park, Kyung Mi;Choi, Seong-Tae;Hwang, Yeon Hyeon;Chang, Young Ho;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.212-217
    • /
    • 2021
  • This experiment was conducted to compare effects of summer pruning at different times and dormant pruning on shoot growth and yield of northern highbush blueberry. Using 7 (2018) to 9 (2020) years old 'Duke' bushes grown in 180 L containers, summer pruning was treated on June 20 (around 30 days after harvest), July 20, and August 20 consecutively in both 2018 and 2019 removing 30% of the total woods, while dormant pruning (conventional) was on January 20 in both 2019 and 2020. Summer pruning reduced shoot growth the following year, especially when treated in late summer. Total shoot length per bush decreased to 47%, 37%, and 33% on October 15, 2020 in June, July, and August pruning, respectively, compared with that of dormant pruning. Summer pruning at different times in 2018 and 2019 did not affect berry characteristic in the following year. Yield per bush was not significantly changed in 2019, but it decreased by 21 to 38% in 2020 in the summer pruning treatments compared with 2.9 kg of the dormant pruning. It was concluded that consecutive summer pruning in 'Duke' under unheated plastic house could weaken the shoot growth with reducing yield.

Effect of Various Fruit-loads on Yield, Fruit Quality and Growth of 'Seolhyang' Strawberry (착과 정도가 '설향' 딸기의 수량, 과실 품질 및 생육에 미치는 영향)

  • Lee, Sang Woo;Hwang, Gap Choon;Yun, Jae Gill;Hong, Jeum Kyu;Park, Soo Jeong
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • This study aimed to examine the effect of different fruit-loads on fruit yield, quality, and plant growth of 'Seolhyang' strawberry. Fruit loads were adjusted from the first to the fourth flower cluster so that the number of fruits became 20, 25, and 30, and non-flower thinning of some was made. The more the number of fruits per plant was, the greater the total yield obtained, but marketable yield decreased and non-marketable yield increased. Compared to the treatment whose fruit load was adjusted, the control with non-flower thinning had more fruit yield in the first and second flower clusters but tended to have less fruit yield in the third and fourth flower clusters. The lower the fruit load was, the more soluble solids content of fruits increased. The lower the fruit load of a flower cluster was, the faster its harvest time reached. Harvest of fruit load of 20 was faster by 10 days in the second and fourth flower clusters relative to the control. On November 24, 2012, flowering thinning of the first flower cluster was made. On March 7, 2013, fruit dry weight of the second flower cluster was most heavy in the control. Dry weight of roots decreased in the control and the fruit load of 30 compared to November 24. On April 9, fruit dry weight of the third flower cluster did not have significant difference according to fruit load, however the more the fruit load was, the smaller dry weight of leaf, root, and crown became, which were vegetative organs. On May 12, the more the fruit load, the smaller leaf area and dry weight of vegetative organs and differences from varying fruit-loads became considerable in later period of growth. Appropriate fruit load of 'Seolhyang' strawberry were from 20 to 25. Maintaining balance between vegetative and fruit growth by adjusting fruit load is very important for stable fruit production.

Effects of Cutting Condition on Quality of Nursery Plant and Fruit Yield in 'Sulhyang' Strawberry (삽목 조건이 '설향' 딸기의 묘소질 및 과실 수량에 미치는 영향)

  • Sang Woo Lee;Yong Hyuk Lee;Jeum Kyu Hong;Sung Hwan Choi;Soo Jeong Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.405-415
    • /
    • 2023
  • This study was conducted to investigate optimal conditions for cutting propagation of the strawberry cultivar "Sulhyang" through the collection methods of cuttings (runners tips), leaf number of cuttings, and cutting time. Cuttings were collected from the mother plant in the nursery bed (MP) and plants after fruit harvest (HP); the leaf number of cuttings was 0, 1, and 2, and the cutting time was at one-week intervals from June 4 to July 9. The survival rates for MP and HP cuttings were notably high, reaching 99.5% and 98.7%, respectively, but no significant difference was found. The number of roots were higher in MP cuttings, and there was no significant difference in crown and leaf growth. The fruit yields were 419.2 and 428.4 g, for MP and HP cuttings, respectively. The survival rates according to leaf number of cuttings were 98.1% and 98.3% for 1 and 2 remaining leaves, respectively, and remarkably lower at 25.3% for no remaining leaves. The root numbers were 26.0 and 26.3 for 1 and 2 remaining leaves, respectively, compared with 23.5 for no remaining leaves, with no significant differences in crown and leaf growth. The fruit yields were 424.4 and 421.5 g for 1 and 2 remaining leaves, respectively, and 396.7 g for no remaining leaves. The survival rates according to cutting time was over 97.2% in all cutting time without any difference in each treatment. The root, shoot, and crown of the nursery plant before planting showed the best growth in the cuttings on June 4 and 11, resulting in the highest fruit yields of 433.3 and 426.4 g, respectively, with the lowest yields at 384.5 g for cutting time on July 9. Both MP and HP materials proved suitable for strawberry cuttings. The optimal leaf number for cuttings was at least 1, and the optimal cutting time in Gyeongnam area was evaluated as around June 4-11.

Productivity and Fruit Quality according to Training Methods and Harvesting Bate on Paprika during Summer Culture in Highland (고랭지 착색단고추의 여름재배시 유인방법에 따른 생산성과 품질)

  • Lee, Jong-Nam;Lee, Eung-Ho;Im, Ju-Sung;Kwon, Young-Seok;Jang, Suk-Woo;Yong, Young-Rok
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • This experiment was conducted to analysis the fruit quality according to training method under low plastic film greenhouse cultivation on sweet pepper (Capsicum annuum cv Special) during summer culture. Training treatments were upright training and inclination training, the fruits were examined and analysed with a month interval from June to November on productivity, fiuit weight, flesh thickness, contents of soluble solids, hardness, shape, and locules. Productivity per month was the highest on June, upright training harvested more than inclination training. Fruit weight of inclination training on June was 232 g which was higher than 26 g of upright training, but upright training was heavier than inclination training after July. Flesh thickness of upright training was thicker than inclination training. Soluble solids content increased with the decrease of temperature, upright training was higher than inclination training. The fruit shape of upright training was not significant according to harvesting date. The number of locules of upright training was $3.27\sim3.34$, and it was not significant according to harvesting date.

Production and Storage Technique of Ever-bearing Strawberry Transplant for Hydroponic Culture on Highlands in Summer Season (고랭지 사계성 딸기의 양액재배시 묘 생산 및 저장방법)

  • Lee Jong Nam;Lee Eung Ho;Lee Jun Gu;Ryu Seung Yeol;Yong Yeoung Rok;Pak Han Young
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.280-283
    • /
    • 2005
  • The growth and yield of ever-bearing strawberry $(Fragaria{\times}ananassa\; Duch.)$ 'Pechika' were compared after transplant treatment in the raised hydroponic culture on highlands in summer season. The transplant production methods compared were whole plant refrigerated, outdoor over-wintered, pot-refrigerated, and 1 -year-old transplants. Growth increment at planting was the highest in pot-refrigerated transplants. C/N ratio of the pot-refrigerated transplants was 39.2 which was higher than 19.5 of 1-year-old transplants. However, the growth increment up to the first harvest were not different among the treatments. The first harvesting date of 1-year-old transplants was August 14, which was 5-9 days late than in the other treatments. The average fruit weight was highest in the 1-year-old transplants with 12.6 g. Marketable yield was the highest in the pot-refrigerated transplants, followed 1-year-old, plant refrigerated, and outdoor over-wintered transplants. Therefore, the pot-refrigerated transplants are recommended for marketable yield increase in ever-bearing strawberry cultured on highlands.

Effect of Soil Heating on Lateral Shooting in White Spined Cucumber. (지중가온이 백침계 오이의 측지 발생에 미치는 영향)

  • 이상규;성기철;김광용;고관달
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.71-72
    • /
    • 2001
  • 최근 수출오이의 재배 면적이 계속증가 추세에 있어 '99년 현재 143ha에 달하고 있다. 그러나 수출오이는 국내 오이와 재배방법이 상당히 달라 국내 오이는 주지착과형이지만 수출오이는 측지착과형으로 측지의 발생여부에 따라 수확량의 차이가 심하다. 따라서 수출오이의 성공여부는 측지발생을 어느정도 시키느냐에 달려 있다고 해도 과언이 아니다. 그런데 수출오이의 재배시기는 우리나라에서 재배환경이 가장 불량한 겨울철(10-2월)로, 저온 및 투광량 부족 등으로 인하여 측지발생율이 매우 저조하다. 따라서 본 시험은 수출오이의 측지 발생율을 높이고자 지중가온기 설치 여부에 따른 효과를 구명하고자 실시하였다. 그 결과, 생육(Table 1)은 접수의 줄기 직경이 지중가온 처리시 10.22mm로, 무가온의 8.64mm보다 굵었고, 엽장과 엽폭에 있어서도 지중가온 처리가 무가온 처리보다 좋았다. 곡과 발생수에 있어서도 지중가온 처리는 주당 0.73개가 발생하였으나, 무가온은 1.26개가 발생되어 지중가온 처리시 무가온에 비해서 생육이 좋아지고, 곡과 발생이 적었다. 주당 측지발생수(Table 2)는 지중가온구가 13.7개였고, 무가온구는 11.7개로 지중가온을 하면 측지발생수가 증가함을 알수 있었다. 또한 상품수확과수에 있어서도 지중가온구는 주당 45개인데 반해 지중무가온구는 38개였으며 따라서 전체적인 수량이 10a당 8,100kg으로, 무가온구의 6,840kg보다 18%의 증수효과가 있었다. 따라서 수출오이재배시 지중가온을 하면, 측지발생수가 증가하고 특히 장측지(Fig. 1)가 다수 발생하여 측지 수확과수가 증가하며, 곡과 등 기형과 발생이 감소하여 상품수량이 증가되므로써 기존 지중 무가온 재배에 비해 14% 소득향상 효과를 기대할 수 있다.시 생장이 둔화되었다. 밀폐시킨 삼각플라스크에서 자라는 Cell은 상태도 좋지 않고 전반적인 증식량도 적었다. Cell은 환기정도에 민감한 것으로 판단되며 삼각플라스크에서 약 35일 정도의 생장 주기를 가지는 것으로 사료된다. 배양 3주까지는 플라스틱 뚜껑으로 밀폐시킨 bottle에서 가장 많은 체세포배를 얻었다. Air filter를 달아 2일 마다 신선한 공기를 넣어 주었을 때는 배의 발달이 많이 늦어져 배양 3주째에 다른 처리보다 배의 수가 훨씬 적었다. 체세포배가 발달하는 동안에는 산소를 많이 요구하지 않으나 성숙하는 동안에는 산소를 많이 요구하는 것으로 생각된다.적인 것으로 나타났다. 다만, 곡선형은 물론 직선형에서도 열교환 튜브의 배치밀도, 튜브 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.에서 제공된 API는 객체기반 제작/편집 도구에 응용되어 다양한 멀티미디어 컨텐츠 제작에 사용되었다.x factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.0$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%$S_{XRD}$)의 기본입자분포로부터 %$S_{XRD}

  • PDF

Effect of External Light Environment and Growing Degree Days on Strawberry Production (외부 광환경 및 생육도일온도가 딸기 생산량에 미치는 영향)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Han, Kilsu;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.432-437
    • /
    • 2022
  • In this study, strawberries were grown during the two cultivation periods (first: 2020-2021, second: 2021-2022) to analyze the effect of the external light environment and growing degree days (GDD) on crop production. The temperature and humidity during day in a greenhouse in each cultivation period were similarly managed. At night, there was a statistical difference in temperature and humidity in the greenhouse between two periods. The accumulated solar radiation during the first cultivation period was high in September and October. Since January, the accumulated solar radiation during the second cultivation period was high. In the second cultivation period, the initial yield was small because the accumulated solar radiation and GDD was small. But accumulated yields and potential maximum yields in second cultivation period were larger than yields in the first cultivation period as the accumulated solar radiation and GDD increased. The sugar contents of strawberry decreased as GDD increased.

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF