• Title/Summary/Keyword: 수학적 직관

Search Result 196, Processing Time 0.021 seconds

Patterns of mathematical concepts and effective concept learning - around theory of vectors (수학적 개념의 유형과 효과적인 개념학습 - 벡터이론을 중심으로)

  • Pak, Hong-Kyung;Kim, Tae-Wan;Lee, Woo-Dong
    • Journal for History of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.105-126
    • /
    • 2007
  • The present paper considers how to teach mathematical concepts. In particular, we aim to a balanced, unified achievement for three elements of concept loaming such as concept understanding, computation and application through one's mathematical intuition. In order to do this, we classify concepts into three patterns, that is, intuitive concepts, logical concepts and formal concepts. Such classification is based on three kinds of philosophy of mathematics : intuitionism, logicism, fomalism. We provide a concrete, practical investigation with important nine concepts in theory of vectors from the viewpoint of three patterns of concepts. As a consequence, we suggest certain solutions for an effective concept learning in teaching theory of vectors.

  • PDF

실제 수업에서의 수학응용소프트웨어의 활용 방안

  • Park, Il-Yeong;Kim, Han-Hui
    • Communications of Mathematical Education
    • /
    • v.10
    • /
    • pp.487-504
    • /
    • 2000
  • 앞으로의 수학교육은 직관과 조작 활동에 바탕을 둔 경험에서 수학적 형식, 관계, 개념, 원리 및 법칙 등을 이해하도록 지도되어야 한다. 따라서 추상적인 수학적 지식을 다양한 수학 교육공학 매체와 적합한 상황과 대상을 제공할 수 있는 컴퓨터 응용소프트웨어를 활용하여, 실제 수업에서 학생 스스로 시각적${\cdot}$직관적으로 개념을 재구성할 수 있도록 여러 가지 도입 및 전개 방안을 제시하고자 한다.

  • PDF

An Analysis on the Elementary Preservice Teachers' Problem Solving Process in Intuitive Stages (직관적 수준에서 초등 예비교사들의 문제해결 과정 분석)

  • Lee, Dae Hyun
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.691-708
    • /
    • 2014
  • In general, the intuitive knowledge that can use in mathematics problem solving is one of the important knowledge to teachers as well as students. So, this study is aimed to analyze the elementary preservice teachers' intuitive knowledge in relation to intuitive and counter-intuitive problem solving. For this, I performed survey to use questionnaire consisting of problems that can solve in intuitive methods and cause the errors by counter-intuitive methods. 161 preservice teachers participated in this study. I got the conclusion as follows. preservice teachers' intuitive problem solving ability is very low. I special, many preservice teachers preferred algorithmic problem solving to intuitive problem solving. So, it's needed to try to improve preservice teachers' problem solving ability via ensuring both the quality and quantity of problem solving education during preservice training courses. Many preservice teachers showed errors with incomplete knowledges or intuitive judges in counter-intuitive problem solving process. For improving preservice teachers' intuitive problem solving ability, we have to develop the teacher education curriculum and materials for preservice teachers to go through intuitive mathematical problem solving. Add to this, we will strive to improve preservice teachers' interest about mathematics itself and value of mathematics.

  • PDF

A Study on the Relationship between Mathematical Creativity and Psychological Types in Middle School Students (수학 창의성과 성격유형과의 관계 연구)

  • Hwang, Dong-Jou
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.313-326
    • /
    • 2006
  • 본 연구는 중학교 2학년 141명의 학생을 대상으로 수학 창의성(Mathematical Creative Problem Solving Ability Test: KEDI, 1997)과 성격유형(Murphy-Meisgeier Type Indicator for Children: 심혜숙 김정택, 1993)과의 상관관계를 조사하였다. 자료 분석은 중학생의 성격 특성을 알아보기 위하여 유형별로 빈도와 백분율을 산출하였고, 성격유형에 따른 수학 창의성의 차이를 검증하기 위하여 평한, 표준편차, t-test, ANOVA와 Duncan 사후검증을 실시하였다. 본 연구 결과는 다음과 같다. 첫 번째, 일반 중학교 2학년과 비교해 볼 때, 선호지표에서 연구 집단의 중학생은 표준화집단(심혜숙 김정택, 1993)보다 I(2.7%), J(3.9%)가 높았다. 두 번째, 수학 창의성과 성격유형을 살펴본 결과, 기질적 측면에서 유창성, 융통성, 수학 창의성 전체에서 NF형이 SJ, SP형에 비해 의미 있게 높았고, SJ형도 SP형에 비해 의미 있게 높게 나타났다. 세 번째, 성격유형 중에서 어떤 요인이 중학교 2학년의 수학 창의성을 잘 예측해 주는지를 살펴본 결과, 직관(N), 내향(I)이 수학 창의성의 예인변인으로서 유의하였다. 이러한 결과와 관련하여 수학 창의성 검사도구 및 수학창의성 프로그램 개발 시 직관과 내향을 우선적으로 고려하여야 한다. 네 번째 NT와 {SP, SJ, NF}는 통계적으로 유의미하게 같은 수준의 집단이 아니므로 직관적사고형(NT)이 감각적 감정형(SF), 감각적 사고형(ST), 직관적 감정형(NF)과는 독립된 특별한 요인으로 보인다. 직관적사고형(NT)은 조사와 개념 학습이나 소크라테스식의 문답법적인 학습과 문제해결학습을 선호하고 독립심이 지지되는 분위기의 학급을 선호한다. 따라서 수학 창의성 증진과 관련된 교육과정이나 프로그램개발 시 조사와 개념 학습이나 소크라테스식의 문답법적인 학습과 문제해결학습을 우선적으로 고려하여야 할 것이다. 연구 결과와 관련하여 연구의 제한점과 후속연구를 위한 제언은 다음과 같다. 첫째, 연구대상이 특정지역의 중학교 2학년 학생이므로 연구결과를 우리나라 중학교 2학년으로 일반화시키는데는 무리가 있을 수 있다. 따라서 후속연구에서는 연구대상의 표집을 확대하여 볼 필요가 있다. 둘째, 수학 창의성과 성격유형간의 관계와 관련하여 수학 창의성과 성격유형의 각 하위 차원들 간에 적률 상관계수를 통해 상관관계를 분석해 보는 것이 필요하다. 셋째 직관과 내향 및 조사와 개념 학승이나 소크라테스식의 문답법적인 학습과 문제해결학습을 고려한 수학 창의성 프로그램이 개발할 필요가 있다.

  • PDF

An Historical Investigation of the Historical Developments of the Concept of Continuous Functions (함수의 연속성 개념의 역사적 발달 과정 분석 - 직관적 지도의 보완을 중심으로 -)

  • Joung, Youn-Joon;Kim, Jae-Hong
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.4
    • /
    • pp.567-584
    • /
    • 2013
  • In school mathematics, the concept of continuous functions has been intuitively taught. Many researches reported that many students identified the continuity of function with the connectedness of the graphs. Several researchers proposed some ideas which are enhancing the formal aspects of the definition as alternative. We analysed the historical developments of the concept of continuous functions and drew pedagogical implications for the intuitive teaching of continuous functions from the result of analysis.

  • PDF

Instruction of Statistical Independence Based on Intuitions Classified by Fischbein (Fischbein의 직관에 기초한 독립성에 관한 확률지도)

  • Cho, Cha-Mi
    • School Mathematics
    • /
    • v.10 no.3
    • /
    • pp.319-337
    • /
    • 2008
  • Intuitions in independence formed by common language help and also hinder the establishment of new conceptual system about independence as a mathematical term. Intuitions which entail such conflicts can be a driving force in explaining independence but at the same time, it is the impedimental factor causing a misconception. The goal of this paper is to help students use the intuitions properly by distinguishing helpful intuitions and impedimental intuitions. This paper suggests that we need to reveal in teaching the misconception resulting not from mathematic but from linguistic interpretation of independence. This paper points out the need for the clear distinction of independence of trials and independence of events and gives an counterexample of the case that sampling with and without replacement shouldn't be specified as a representative example of independence and dependence of events. The analysis of intuition in this parer is based on intuitions classified by Fischbein and this paper analyzed institutions applied to the concept of independence corresponding intuitions classified by Fischbein.

  • PDF

The Study on the $Poincar\acute{e}'s$ Psychology in Invention (푸앵카레($Poincar\acute{e}$)의 발명 심리학의 고찰)

  • Lee, Dae-Hyun
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.171-186
    • /
    • 2009
  • $Poincar\acute{e}$ is mathematician and the episodes in his mathematical invention process give suggestions to scholars who have interest in how mathematical invention happens. He emphasizes the value of unconscious activity. Furthermore, $Poincar\acute{e}$ points the complementary relation between unconscious activity and conscious activity. Also, $Poincar\acute{e}$ emphasizes the value of intuition and logic. In general, intuition is tool of invention and gives the clue of mathematical problem solving. But logic gives the certainty. $Poincar\acute{e}$ points the complementary relation between intuition and logic at the same reasons. In spite of the importance of relation between intuition and logic, school mathematics emphasized the logic. So students don't reveal and use the intuitive thinking in mathematical problem solving. So, we have to search the methods to use the complementary relation between intuition and logic in mathematics education.

  • PDF

Lotfi A. Zadeh, the founder of fuzzy logic (퍼지 논리의 시조 Zadeh)

  • Lee, Seung-On;Kim, Jin-Tae
    • Journal for History of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.29-44
    • /
    • 2008
  • Fuzzy logic is introduced by Zadeh in 1965. It has been continuously developed by many mathematicians and knowledge engineers all over the world. A lot of papers concerning with the history of mathematics and the mathematical education related with fuzzy logic, but there is no paper concerning with Zadeh. In this article, we investigate his life and papers about fuzzy logic. We also compare two-valued logic, three-valued logic, fuzzy logic, intuisionistic logic and intuitionistic fuzzy sets. Finally we discuss about the expression of intuitionistic fuzzy sets.

  • PDF

Role of Symbol and Formation of Intuition by the Mediation of Symbols in Geometric Proof (기하 증명에서 기호의 역할과 기호 중재에 의한 직관의 형성)

  • Kim, Hee;Kim, Sun-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.4
    • /
    • pp.511-528
    • /
    • 2010
  • Students' intuition in formal proof should be expressed as symbols according to the deductive process. The symbol will play a role of the mediation between the intuition and the formal proof. This study examined the evolution process of intuition mediated by the symbol in geometry proof. According to the results first, symbol took the great roles when students had the non-formed intuition for the proposition. The signification of symbols could explain even the proof process of the proposition with the non-expectable intuition. And when students proved it by symbols, not by figure nor words, they could evolute the conclusive intuition about the proposition.

  • PDF

An Analysis on the Mathematical Problem Solving via Intuitive Thinking of the Korean and American 6th Grade Students (한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석)

  • Lee, Dae Hyun
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.