• 제목/요약/키워드: 수학적 사고과정

검색결과 378건 처리시간 0.027초

수학적 과정 중심 교수학습법을 통한 만 5세 유아의 수학적 사고 변화 탐구 (Exploring the Process of Change in 5-year-olds' Mathematical Thinking through Mathematical Process-focused Instruction)

  • 김은영;정가윤
    • 영재교육연구
    • /
    • 제25권4호
    • /
    • pp.581-605
    • /
    • 2015
  • 본 연구에서는 유아들을 대상으로 수학적 과정 중심 교수학습법을 통한 수학적 사고 변화에 대하여 관찰하고 그 내용을 분석하였다. 이를 위해 설문조사와 현장 관찰을 통한 상황분석을 실시하여 구성한 수학적 과정 중심 교수학습법을 서울에 위치한 유치원에 재원중인 만 5세, 12명을 대상으로 적용하여 질적 연구를 시행하였다. 연구 결과는 문제해결하기, 추론과 증명하기, 연계하기, 표상하기, 의사소통하기의 다섯 가지 수학적 과정이 교사-유아, 유아-유아의 상호작용을 통해 구체화되어 유아의 수학적 사고를 자극하고 변화를 창출하였다. 또한 수학적 지식이 내재되고 통합된 문제 상황을 교사가 제시하고 수학적 과정에 중점을 두어 유아들이 또래와 협력적으로 문제를 해결하면서 수학적 과정과 수학적 태도에 변화가 일어났다. 즉 유아의 수학적 사고는 수학적 지식이 내재된 수학적 과정을 통해 수학적 태도의 긍정적인 변화과정 안에서 통합되어 증진되었다.

중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로 (Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami-)

  • 서지희;윤종국;이광호
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.785-799
    • /
    • 2013
  • 본 연구는 수학적 모델링 수업이 수학 영재 학생들에게 문제해결의 기회를 제공하고 수학적 모델링 활동을 통해 다양한 수학적 사고력을 발전시킬 수 있다는 가정 하에 중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수 학습 자료를 개발하였다. 개발된 교수 학습 자료를 적용하여 사례연구를 통해 수학적 모델링의 단계별 활동과정을 살펴보고 각 단계에서 어떠한 수학적 사고능력이 나타나는지 분석하였다. 수학적 모델링 과정에서 다양한 수학적 사고능력이 나타났는데 문제를 이해하는 실세계 탐구과정에서는 정보의 조직화 능력이, 상황모델을 개발하는 과정에서는 직관적 통찰능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고 능력이 나타났다. 수학모델 개발과정에서는 수학적 추상화 능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고가 나타났으며 모델적용 과정에서는 일반화 및 적용 능력과 반성적 사고가 나타났다. 모델링 수업이 진행됨에 따라 반성적 사고능력이 더 많이 나타나는 것을 확인할 수 있었다.

  • PDF

사고구술법(思考口述法)을 이용한 수학(數學) 영재(英才)의 사고(思考) 특성(特性) 연구(硏究) (An Analysis on Thinking Processes of Mathematical Gifted Students Using Think-aloud Method)

  • 홍진곤;강은주
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권4호
    • /
    • pp.565-584
    • /
    • 2009
  • 본 연구의 목적은 수학 영재의 인지적 사고 과정 분석을 통해 수학적 사고 특성에 대하여 조망하는 분석틀을 제시하고 수학 영재의 사고 패턴을 구조화시키기 위한 것으로, 이를 위해 사고구술법을 통해 추출된 수학 영재의 사고 특성을 분석한다. 본 연구에서는 학생들의 사고 특성을 추출하는 분석틀과 문제 해결 단계 코드를 이용한 분석틀을 개발하였고, 수학 영재학생들이 문제 해결 과정 중 인지 활동으로 거치게 되는 절차와 사고 특성 지도를 살펴보고 대상 학생들이 여러 번의 시행착오 후 전체적인 과정을 수정하며 수행해 나가게 되는 방법과 문제의 최종적인 해결안을 도출해 내는 경로 탐색 과정을 종합적으로 살펴봄으로써, 수학 영재들의 수학적 사고 특성을 좀 더 과학적인 방법으로 분석하는 준거를 마련하였다.

  • PDF

유추 사고과정 모델의 개발 (Development of a Model for the Process of Analogical Reasoning)

  • 최남광;류희찬
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권2호
    • /
    • pp.103-124
    • /
    • 2014
  • 기존의 문제해결 유추(Problem Solving Analogies)의 사고과정은 표상, 접근, 사상, 적용, 학습의 5단계로 요약된다. 본 연구의 목적은 일반적인 문제해결 유추의 사고과정을 토대로 수학교육이라는 특수성이 반영된 '유추 사고과정 모델'을 개발하여 궁극적으로 학생들이 더 많이 유추를 사용할 수 있도록 도움을 주는데 있다. 모델의 개발과정은 먼저 Euler가 유추를 사용해 수학적 발견을 시도한 역사적인 사례를 분석하여 가설적 유추 사고과정 모델(초안)을 설계한 후, 연구자가 고안한 유추과제 즉, 피타고라스 정리의 증명을 유추적으로 연결시켜 코사인법칙을 증명하는 과제를 수학영재들로 하여금 해결하도록 하고, 그 해결과정에서 나타나는 사고과정의 특성을 반영하여 모델을 2차에 걸쳐 수정 보완하였으며, 교육적인 시사점을 도출하였다.

  • PDF

구체물의 추상화와 추상적 개념의 구체화에 나타나는 초등학생의 수학적 사고 분석 (Primary Students' Mathematical Thinking Analysis of Between Abstraction of Concrete Materials and Concretization of Abstract Concepts)

  • 임영빈;홍진곤
    • 대한수학교육학회지:학교수학
    • /
    • 제18권1호
    • /
    • pp.159-173
    • /
    • 2016
  • 실제 교육 현장에서는 구체적 맥락에서 추상화하는 과정과 반대로 추상화된 개념을 먼저 가르치고 구체적인 문제 상황을 도입하는 경우도 있다. 즉, 추상적 지식을 구체화 해야 하는 경우가 있는 것이다. Freudenthal은 이런 상황을 반교수학적인 전도라고 표현하며 부정적인 견해를 나타낸 바 있지만 모든 수업상황이 구체적 상황이나 구체물에서 출발하는 추상화로 진행될 수 있는지는 의문의 여지가 있다. 본 연구에서는 구체물을 추상화하여 추상적 개념을 형성하는 과정과 추상적 개념을 구체적인 상황으로 구체화하는 과정에서 나타나는 수학적 사고의 차이점을 비교 분석하여 그 교육적 시사점을 살펴보고자 한다. 이를위해 AiC의 분석틀을 활용하여 구체물의 추상화 과정에서의 수학적 사고를 분석하였고, AiC의 분석틀을 토대로 연구자가 구안한 방식으로 추상적 개념의 구체화 과정에서의 수학적 사고를 분석하였다. 두 과정을 비교 분석한 결과 구체물의 추상화 과정만큼이나 추상적 개념의 구체화 과정에서도 유의미한 수학적 사고를 유도할 수 있음을 확인할 수 있었다.

수학적 사고의 교수 방법으로서의 수학화 (Mathmatization As a Method of Teaching Mathematical Thinking)

  • 유현주
    • 한국초등수학교육학회지
    • /
    • 제1권1호
    • /
    • pp.123-140
    • /
    • 1997
  • 수학은 결과가 아니라 과정으로서 학습되어져야 한다고 주장되어 오고 있다. 그러나, 학교 수학의 내용은 top-down 방식으로 선정되며, 학생들에게 수학적 개념을 결과로서 주입시키고 있다. 결과적으로 학생들은 탐구 과정이나 수학적 사고를 외면하고 학교 수학을 배운다. 프로이덴탈에 의하면, 그것이야말로 수학 교육에 있어서 모든 문제의 근원인 것이다. 그는 "수학적으로 사고하는 것을 가르치는" 방법으로서 수학화를 제안한다. 수학화, 즉 활동으로서의 수학을 해석하고 분석하는 과정을 통하여 "수학적으로 사고하는 것을 가르치는" 것은 수학 교육의 목적을 구현하는 한 방법이다.

  • PDF

'바닥 꾸미기' 과제를 이용한 수학적 모델링 과정에서 초등수학영재의 메타인지 분석 (An Analysis of Metacognition of Elementary Math Gifted Students in Mathematical Modeling Using the Task 'Floor Decorating')

  • 윤수미 ;장혜원
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권2호
    • /
    • pp.257-276
    • /
    • 2023
  • 수학적 모델링이란 실세계 문제 상황을 이해하고 이를 수학적인 방법으로 변환하여 수학적 모델을 토대로 실세계 문제 상황을 해결해나가는 일련의 과정이라고 할 수 있다. 선행연구를 통해 수학적 모델링을 활용한 수업의 학습 효과가 밝혀짐에 따라 우리나라에서도 효과적인 수학적 모델링 수업을 위한 다양한 연구가 이루어지고 있다. 본 연구는 초등수학영재의 수학적 사고 양식에 따라 수학적 모델링 과정에서 나타나는 메타인지적 특성을 분석함으로써 수학적 모델링 지도 과정에서의 시사점을 모색하는 것을 목적으로 한다. 이를 위해 S시 소재 대학부설과학영재교육원 초등수학 영재학생 39명을 대상으로 수학적 사고 양식 검사를 진행하여 검사 결과에 따라 시각적, 분석적, 혼합적 모둠으로 분류하고 각 사고 양식이 가장 뚜렷하게 드러나는 3개 모둠(총 12명)의 수학적 모델링 과정에서 나타나는 메타인지 특성을 분석하였다. 분석 결과, 모델링 단계와 모둠 특성에 따라 메타인지 요소가 다르게 나타나는 것을 확인하였으며, 이와 같은 분석 결과에 기초하여 수학적 모델링 지도 과정에서의 교수학적 시사점을 도출하였다.

분동을 활용한 문제의 수학적 탐구 (Mathematical Exploration of Counterweight Activities)

  • 김상룡
    • 한국초등수학교육학회지
    • /
    • 제14권1호
    • /
    • pp.123-134
    • /
    • 2010
  • 본 논문에서는 평형저울을 이용하여 정확한 무게를 측정하기 위한 분동설계 과정에서 적용되는 수학적 내용 및 그 표현들에 대해 탐구하였다. 이 일련의 과정에서 일어날 수 있는 수학 장면과 아이디어 탐구, 2진법, 3진법의 2가지 다른 표현에 대한 이해 등을 포함한 구체적인 수학적 사고의 형성과정을 설명하고 분석한다. 이러한 과정을 현장에 적용하여 학습자의 수학적 사고의 발달과 수학적 성향을 개선시키는데 조금의 보탬이 되고자 하는데 그 목적이 있다.

  • PDF

수학적 창의성에 대한 일 논의 - 창의적인 사람, 창의적인 산물, 창의적인 과정이란 관점으로부터 -

  • 김진호
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권3호통권20호
    • /
    • pp.45-56
    • /
    • 2004
  • 본고는 수학적 창의성과 관련한 논문으로 이를 창의적인 사람, 창의적인 산출물, 창의적인 과정이란 일반 창의성 연구자들이 연구하고 있는 분야로부터 유추적으로 논의를 시도하였다. 이런 접근으로부터, 얻을 수 있는 몇 가지 가정들은 다음과 같은 것이 있다. 첫 번째, 일반 보통아들을 대상으로 하는 공교육에서도 창의성 교육을 할 수 있으며, 이는 수학교과에도 적합한 진술이다. 두 번째, 현상학적 입장으로 부터 학교에서 교수${\cdot}$ 학습되고 있는 학교수학이 학생들 입장에서 보면 학습해야 할 필요가 있는 적절하고 새로운 지식이란 점을 공고히 해 주었다. 또한, 여기서 강조한 것은 새롭고 적절한 지식이 완성된 지식뿐만 아니라 발생상태 그대로의 지식 즉, 과정으로서의 지식도 포함하고 있음을 제안하였다. 세 번째, 수학자가 수학을 탐구하는 과정을 창의성 연구자들이 보듯이 인지과정으로 보는 대신에 한 수학적 아이디어를 이로부터 하나의 완성된 수학적 지식을 완성하기까지의 수학적 사고과정으로 보는 것이 수학교육적 의미에서 교수${\cdot}$ 학습에 의미가 있음을 살펴보았다.

  • PDF

초등수학영재들의 메타인지적 사고 과정 사례 분석 (A Study on the Cases of Mathematically Gifted Elementary Students' Metacognitive Thinking)

  • 신은주;신선화;송상헌
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권3호
    • /
    • pp.201-220
    • /
    • 2007
  • 본 연구는 초등수학영재들이 수학 과제를 해결하는 과정에서 활성화되는 메타인지적 사고의 과정을 분석하여 메타인지적 기능이 문제해결 과정의 성패에 미치는 영향을 조사하고, 이를 통해 메타인지적 사고를 활성화할 수 있는 방안에 대한 시사점을 제안하고자 한다. 수준이 다른 두 집단에서 선택한 7명으로부터 얻은 14가지의 사례를 Wilson & Clarke(2004)의 메타인지 모델을 기반으로 분석한 결과, 초등수학영재들이 주로 사용한 메타인지의 경로에는 ARE, RE, AERE의 3가지가 나타났다. 집단의 수준이 높을수록 ARE 경로를 선호하였는데 이는 문제해결에 성공한 학생들이 보여주는 주된 경로임도 확인하였다. 그리고 과제의 수준에 따라 메타인지 사고 과정이 다르다는 점, 같은 경로로 문제를 해결한 학생들이 동일한 메타인지적 사고를 하여도 메타인지적 사고의 능력에 따라 문제해결의 성패가 달라진다는 점, 메타인지적 지식에 대해 잘 의식하는 학생은 문제해결에 대한 조절과 제어 능력이 높은 면을 보인다는 점 등도 사례를 통해 확인하였다. 이를 바탕으로 초등수학영재들의 메타인지적 사고를 활성화하기 위한 3가지의 시사점을 얻었다.

  • PDF