Taylor series has a complicated structure comprising of various concepts in college major mathematics. This subject is a strong tool which has usefulness and applications not only in calculus, analysis, and complex analysis but also in physics, engineering etc., and other study. However, students have difficulties in understanding mathematical structure of Taylor series convergence correctly. In this study, after classifying students' mathematical characteristic into three categories, we use structural image of Taylor series convergence which associated with mathematical structure and operation acted on that structure. Thus, we try to analyze the understanding of Taylor series convergence and present the results of this study.
학생들이 분수 개념을 이해하기 위하여 분수 개념에 대한 표상과 현행 교과서에 기술되고 있는 분수 개념에 대한 실제를 살펴보았다. 그리고 5학년 남학생 3명과 여학생 3명을 대상으로 동치분수의 개념과 모델링이 동치분수를 이해하는데 어떤 역할을 하는지를 살펴보고자 하는 것이 본 연구의 목적이다.
학생들의 분수 나눗셈에 대한 이해는 개념적 이해를 바탕으로 수행되어야 함에도 불구하고 분수 나눗셈은 많은 학생들이 기계적인 절차적 지식으로 획득할 가능성이 높은 내용이다. 이것은 학생들이 학교에서 분수 나눗셈을 학습할 때에 일상생활에서의 경험과 선행 학습과의 연결이 잘 이루어지지 못하고 있는 것에 큰 원인이 있다고 본다. 본 연구에서는 학생들의 분수 나눗셈의 개념적 이해를 돕기 위하여 경험적 지식과의 연결 관계를 활용한 교수 방안을 실험 교수를 통해 조사하였다. 결과로서 번분수를 활용한 수업은 분수 나눗셈의 표준 알고리즘이 수행되는 이유를 알 수 있게 하는데 도움이 되나 여러 가지 절차적 지식이 뒷받침되어야 하며 분수 막대를 직접 잘라 보는 활동을 통한 수업은 분수 나눗셈에서의 나머지를 이해하는데 효과가 있다는 것을 알았다. 결론적으로, 학생들의 경험과 학교에서 이미 학습한 분수 나눗셈들의 관련 지식들을 적절히 연결하도록 한다면 수학적 연결을 통해 분수 나눗셈의 개념적 이해를 이끌 수 있다.
칠판과 분필만을 이용한 증명 위주의 기하 수업을 탈피하여 현장에서 사용할 수 있는 능동적인 교수${\cdot}$학습에 한가지 방법을 제시하고자 수학에 자신감이 없는 고등학교 1학년 학습 부진아를 대상으로 컴퓨터 프로그램, Tess를 이용하여 학생의 변환 개념에 대한 이해도를 조사하였다. 또한, 테셀레이션을 직접 만들어 가는 과정을 통하여 타 교과와의 수학적 연결성을 이해하고, 수학의 실용성과 실생활과의 연관성, 도형의 아름다움을 학생이 스스로 찾고, 발견하는데 초점을 두었다. 우리의 전통 문양도 수학교육에 충분히 이용될 수 있다는 사실을 확인할 수 있었고, 학생의 수학에 대한 태도가 크게 향상됨을 알 수있었다.
본 연구에서는 먼저, 수학교사에게 필요한 지식으로 교과, 학생, 교수학적 내용 지식이 필요함을 문헌을 통해 정리하였다. 교사의 지식과 수업 실제에 관한 세 편의 논문을 분석한 결과 교사의 수학에 대한 충분한 이해가 학생의 학습과 효과적인 교수에 절대적인 영향을 미친다고 주장할 수 없음을 알 수 있었다. 그러나 수학에 대한 바른 이해는 학생의 질문에 적절한 반응을 할 수 있도록 하며, 수업을 계획하고 교실에서 이루어지는 담화를 수학적으로 원활하게 조절할 수 있도록 도움을 줄 수도 있었다. 따라서 수학을 잘 아는 것이 효과적인 교수·학습을 보장하지는 못하지만, 교사가 잘 알지 못하는 것을 가르칠 수는 없다는 결론을 얻었다.
21세기를 눈앞에 두고 있는 오늘날의 사회에서는 변화에 적응할 수 있는 능력과 정보를 이해할 수 있는 능력이 더욱 필요하다. 따라서, 수학에서도 산술과 같은 기초적인 수학뿐 아니라 새로운 정보, 복잡한 정보를 이해하고 의사 소통하는 능력이 요구된다. 수학은 패턴의 과학이며 우리가 살고 있는 세상을 묘사하는 도구로서 자연 언어를 보충하는 의사소통의 한 형태이기도 하다. 그러므로 수학 수업에서는 기본 개념과 공식은 물론 의사소통 능력을 강조해야 한다(Mathematical Sciences Education Broad, 1990).(중략)
In order to find the structure and scheme of basic mathematics education in life and nano-related areas in university, I've studied how much the freshmen in those fields in the university know about the graphic expressions for the basic functions(quadratic function, rational function, irrational function, log function and trigonometric function), basic information contained in those graphs and basic high school mathematics. Also, I've examined mathematics used in books for majors related to those areas. The result of the study shows that there is a lack of understanding of the graphic expressions for basic functions, information contained in those graphs and basic high school mathematics. I've also found out that there is a difference in the amount and depth of mathematics used in each major in life and nano-related areas. According to the result of this study, the amount of understanding of freshmen with each major in basic high school mathematics needs to be reflected in structuring basic mathematics education in life and nano-related areas in university, and the amount and dept of content of mathematics should be considered in each major.
1980년을 전후하여 카오스연구가 물리학에서 왕성하게 이루어졌다. 미국의 물리학자 파이겐바움(M. J. Feigenbaum)이 보편상수를 발견한 것이(1978) 중요한 계기가 되었다. 파이겐바움의 보편상수는 카오스현상에서 공통적으로 발견할 수 있다. 보편상수를 탐구하기 위해서는 주기, 배가, 파이겐바움 분기도에 대한 이해가 필요하다. 프로그래밍을 통하여 일반적으로 소개하고 있으므로, 프로그래밍에 대한 깊은 이해없이는 분기도를 탐구하기 어렵다. 프로그래밍을 통해서는 나타나는 결과만을 이해할 수 있다. 이 논문에서는 학습자가 프로그래밍 이전에 엑셀의 기능을 이용하여 파이겐바움 분기도를 그릴 수 있는 방법을 제시하고, 파이겐바움의 주기에 대해 엑셀을 이용하여 시각적으로 이해할 수 있도록 한다.
본 연구에서는 중학교 과정에서 기본이 되는 개념이라 할 수 있는 음수 개념의 이해실태를 중학교 1학년 학생들을 대상으로 분석하고, 예비수학교사들이 음수 개념에 대해 어느 정도의 '교수학적 내용지식'을 갖고있는지 파악하여 분석하고자 하였다. 또 학생들이 겪는 음수개념 학습에서의 어려움을 해결하기 위한 방안을 제시하여 음수 개념 지도에 도움을 주고자 한다.
수학이 자연과학의 기초 또는 기본으로 여겨지듯이, 수학에서도 기초가 되는 강좌들이 있다. 미적분학이나 집합론, 그리고 선형대수학은 그러한 강좌라고 할 수 있다. 대수학의 관점에서 볼 때, 선형대수학은 현대대수학을 이해하기 위한 기본바탕이 되고, 한편 수학 전체적으로 보더라도, 선형대수학은 다른 고등수학을 배우기 위한 필수적인 선수과목을 것이고, 그 자체로서도 많은 응용성을 지니고 있다. 뿐만 아니라 선형대수학은 중등 교육과정과도 밀접한 관련이 있으므로, 교샤양성 대학에서의 선형대수학 강좌를 통해 학생들은 교육과정상의 연계성까지 이해하여야 한다. 따라서 본 연구는 사범대학 학생들로 하여금, 선형대수학 그 자체의 순수한 측면과, 중등교육과의 긴밀한 관련성, 아울러 기하락, 미분방정식, 그리고 부호이론과 관련된 최신 정보수학의 응용적인 측면도 포함하여 선형대수학의 폭넓은 이해를 꾀하는 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.