본 연구의 목적은 아동들의 수학 교과에 대한 정의적 특성과 수학적 문제 해결력, 추론 능력간의 상호 관계를 구명하고, 이러한 관계들은 아동의 지역적인 환경에 따라 차이가 있는지를 분석하는 것이다. 본 연구를 통하여 얻은 결론은 다음과 같다. 정의적 특성의 하위 요인 중 수학적 문제 해결력과 귀납적 추론 능력에 대한 설명력이 가장 높은 요인은 수학교과에 대한 자아개념인 것으로 나타났으며, 연역적 추론 능력에 대한 설명력은 학습 습관이 가장 높은 것으로 나타났다. _그리고 귀납적 추론 능력이 연역적 추론 능력 보다 수학적 문제 해결력에 대한 설명력이 더 높은 것으로 나타났으며, 수학적 문제 해결력과 귀납적 추론 능력은 지역별로 유의한 차가 나타났으나 연역적 추론 능력은 지역간 유의한 차이가 나타나지 않았다.
학교 현장에서 아이들을 지도하다 보면 문제해결력이 상당히 낮다는 것을 자주 경험하곤 한다. 따라서 그러한 문제점에 대하여 고민하고 다양한 방법을 생각해 보는데, 그 해결 방안으로 소집단 협력학습을 실시하여 아이들의 전반적인 문제해결능력을 높여 보고자 본 연구를 실시하게 되었다. 그러기 위하여 소집단의 구성을 수학 성적을 토대로 하여 5단계로 분류하여 실시하였다. 이에 따른 연구 문제로는 크게 3가지로 정하였는데 다음과 같다. 첫째, 소집단 협력학습이 일제 학습에 비하여 수학 문제해결 능력을 향상시켰는가? (실험반과 비교함) 둘째, 소집단 협력학습이 개인별 수학 문제해결능력을 향상시켰는가? (개인별 비교; 실험반에 국한됨) 셋째, 소집단 협력학습이 수학 교과에 대한 아동들의 수학적인 태도변화를 가져왔는가? 위에서 제시한 연구 문제들을 해결한 결과, 실험반이 비교반보다 문제해결력이 유의미한 수준으로 높게나왔고, 또한 5단계로 분류한 아동들 개개인의 문제해결력에서는 특히 중하위권에 있는 아동들이 실험 후에 문제해결력이 높게 나왔다. 끝으로, 아동들의 수학적인 태도 변화에 관한 설문에서는 소집단 협력학습으로 인하여 수학에 대한 흥미와 자신감이 많이 생긴 것으로 나왔다. 따라서 7차 교육과정에서 주장하는 단계형 수준별 교육과정을 실행하는데 있어서 소집단 협력학습이 하나의 대안이 될 수 있을거라 생각하고, 아동들의 문제해결력을 높이는 또 하나의 수업 형태로서도 시도해 볼만한 것이라 생각한다.
오래 전부터 수학과의 연구는 학생들의 문제 해결력에 관하여 집중되어 온 것이 사실이다. 그럴 때마다 수학적 사고력에 관한 연구도 상당히 많은 부분이 있어 왔다. 본고에서는 학생들의 수학적 사고를 돕기 위한 방법으로 메타 인지를 강조함으로써 보다 까다로운 (비정형) 문제들의 문제 해결을 돕고자 하였다. 따라서 메타 인지를 유발하는 수업(소수 학습)을 통하여 학생들의 문제 해결력(정형 - 비정형)에서 유의미한 차이가 있는지를 알아보고, 궁극적으로는 메타 인지적 사고가 비정형 문제들을 해결하는 데 미치는 영향을 밝혀 수학 학습의 발전 방안을 찾고자 한다.
본 연구에서 문제제기 수업이 수학학습에 미치는 효과를 알아보기 위하여 문제제기 수업과 기존의 교사 주도식 수업방식에서 문제해결력과 수학적 창의력에 대한 효과를 분석하였다. 중학교 3학년 학생을 대상으로 28주 동안 문제제기 수업을 실시하여 수업을 한 후, 문제해결력 검사지와 수학적 창의력 검사지를 평가한 결과는 다음과 같다. 첫째, 문제제기 수업을 활용한 수업방식이 기존의 교사 주도식 수업방식에 비해 문제해결력 신장에 효과가 있는 것으로 나타났다. 둘째, 문제제기 수업이 교사 주도식 수업에 비해 수학적 창의력 신장에 효과가 있는 것으로 나타났고, 특히 수학적 창의력 하위 요소 중 유창성과 융통성 신장에 효과가 있었다. 따라서 문제해결력 신장과 수학적 창의력 신장을 위해서 학교수업에서 문제제기 수업 활동의 도입을 제언한다.
Proceedings of the Korea Society of Mathematical Education Conference
/
2006.04a
/
pp.211-226
/
2006
이 연구는 수학 창의적 문제해결력을 바탕으로 수학 영재를 판별하기 위해서 수학 창의적 문제해결력 검사를 개발하고, 유창성만으로 수학 창의성을 평가한 이 검사 방법의 신뢰도와 타당도를 검증하는데 있다. 10개의 개방적인 수학 문제를 개발한 바, 수학적으로는 직관적 통찰력, 정보 조직력, 추론능력, 일반화 및 적용력, 반성적 사고력을 요구하는 문제들이다. 이 10문항을 영재교육기관에 입학하고자 지원한 초등학교 5학년 2,2029명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 측정했다. 학생들의 반응은 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPTS 로 분석했다. 문항반응 분석결과, 이 검사는 창의성을 유창성만으로 측정할 때도 영재판별 검사로서 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 덜 정의되고, 덜 구조화되고, 신선한 문제가 영재교육 프로그램에 지원한 학생들의 수학 창의성을 측정하는데 좋은 문제임을 확인할 수 있었다. 또한 이 검사는 남학생이 여학생보다 수학 창의적 문제해결력이 우수하며, 영재교육원에 지원한 학생들이 수학영재학급에 지원한 학생들보다 더 우수함을 확인해 주었다.
본 연구는 초등학교 수학의 연산 영역에 있어서, 문제설정활동의 두 가지 방법(문제꾸미기, 문제만들기) 중 어느 방법이 4학년 아동의 수학적 문제해결력에 더 효과적인지 알아보고, 아동의 학습능력수준과 성별에 따라 수학적 문제해결력의 신장에 더 유용한 문제설정방법을 찾아보는데 그 목적이 있었다. 그 결과 '문제꾸미기'에 의한 문제설정방법이 학습 수준이 상 ${\cdot}$중위 집단에서 유용한 방법이며, 문제해결력 요소 중 문제구성력과 전략적용력을 신장시킬 수 있다는 방법이라는 것을 알 수 있었고 남녀성별에 따른 유의미한 차이는 없었다. 이런 연구 결과로 주어진 문제를 조건과 내용을 바꾸는 다소 쉬운 문제설정 방법보다는 어떤 상황만 제시하고 그 상황 속에서 문제를 만들어보는 문제꾸미기의 문제설정 방법이 문제해결력의 신장에 도움이 됨을 알 수 있었다.
In this study, an instrument of mathematical problem solving ability test was considered, and the difference between gifted and regular students in the ability were investigated by the test. The instrument consists of 10 items, and verified its quality due to reliability, validity and discrimination. Participants were 168 regular students and 150 gifted from seventh grade. As a result, not only problem solving but also problem finding and problem posing could be the characteristics of the giftedness.
본 연구의 목적은 개방형 교수법에 의한 수업이 수학적 문제해결력과 신념 형성에 미치는 효과를 분석함으로써 수학 교수방법의 개선에 도움을 주는 데 있다. 본 연구를 통하여 얻은 연구 결과는 첫째, 개방형 수업 집단과 일반적 수업 집단간에 문제해결력에 있어서 유의미한 차이가 있었으며, 둘째, 개방형 수업 집단과 일반적 수업 집단간에 수학적 신념에 있어서도 유의미한 차이가 있었다. 본 연구의 결과를 통하여, 개방형 교수법에 의한 수업은 일반적 수업보다 문제해결력 및 수학적 신념 수준을 향상시킬 수 있는 교수법임을 시사한다.
The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.
본 연구는 창의적 수학문제해결력의 검사도구의 요소들을 제시하고 있다. 수학적 창의성을 과정적 관점에서 출발하여 수학적 창의성을 창의적 수학문제제해결과 동일시하고 그에 따른 검사도구의 기본요소들을 Polya의 문제해결기법에서 나타나는 메타인지적 전략과 수학적 마인드를 검사하는 요소들로 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.