• Title/Summary/Keyword: 수학문제해결

Search Result 1,336, Processing Time 0.027 seconds

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

A Study on Solving Triangle Construction Problems Related with Radius of Escribed Circle Using Algebraic Method (대수적 방법을 이용한 방접원에 관련된 삼각형 작도문제의 해결 연구)

  • Gong, Seon-Hye;Han, In-Ki
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.3
    • /
    • pp.399-420
    • /
    • 2008
  • In this paper we solve various triangle construction problems related with radius of escribed circle using algebraic method. We describe essentials and meaning of algebraic method solving construction problems. And we search relation between triangle construction problems, draw out 3 base problems, and make hierarchy of solved triangle construction problems. These construction problems will be used for creative mathematical investigation in gifted education.

  • PDF

Note on a Method for Mathematical Creativity Assessment by Differentiating the Student's Solutions of the Posed Problems (문제해결 방법의 차등화를 통한 수학적 창의성 평가에 대한 소고)

  • Kim, Pan Soo;Kim, Nan Young
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.503-522
    • /
    • 2013
  • In the 2009 new curriculum reform, where creativity is the key point, assessment methods for mathematical creativity is recommended. However, lessons for creativity are not carried out well in mathematics classes. One of the reasons for this is the lack of assessment methods for student's creativity and specific instructions on how teachers should evaluate their students using a written test. Therefore, in this paper, we propose a simple way to evaluate student's creativity by differentiating the student's solutions of the posed problems. For validation of the proposed method, we identified the properties of excellent problem solutions cited by both the students group and teachers group. A chi-square test was then carried out to compare any differences in frequency that each of the groups chose as an excellent solution as a result of the student's problem solving

  • PDF

A study on literature review of mathematical modeling in mathematical competencies perspective (수학 교과 역량 관점에서의 수학적 모델링에 관한 선행 연구 탐색)

  • Choi, Kyounga
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.2
    • /
    • pp.187-210
    • /
    • 2017
  • The animated discussion about mathematical modeling that had studied consistently in Korea since 1990s has flourished, because mathematical modeling was involved in the teaching-learning method to improve problem solving competency on 2015 reformed mathematics curriculum. In an attempt to re-examine the educational value and necessity of application to school education field, this study was to review the literature of mathematical modeling in mathematical competencies perspective. As a result, mathematical modeling could not only be involved the components of problem solving competency, but also support other competencies; reasoning, creativity-amalgamation, data-processing, communication, and attitude -practice. In this regard, This paper suggested the necessity of the discussion about the position of mathematical modeling in mathematical competencies and the active use of mathematical modeling tasks in mathematics textbook or school classes.

  • PDF

A Classroom Activities of the Problem Solving Using Visualized Materials In Pre-service Mathematics Teacher's Education (예비 수학 교사 교육에서 시각적 자료를 이용한 문제 해결 지도 사례)

  • Kim, Nam-Hee
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.493-506
    • /
    • 2010
  • In this study, we conducted classroom activities that are exploring and explaining visualized materials for problem solving of school mathematics with pre-service teachers in 2007~2009. After finishing these classroom activities, pre-service teachers recorded an afternote that includes changes of their thinking about mathematics and mathematics education through these activities in this study. We collected various opinions of pre-service mathematics teachers. From the analysis these data, we searched educational effects of our classroom activities. Through conducting the practice like these classroom activities of our study, pre-service mathematics teachers will have an opportunity of a practical training that supports the teaching of mathematical problem-solving. Moreover their PCK will be enhanced. Also, They will learn a good way to realize the aim of school mathematics curriculum.

  • PDF

A Study on the Measurement in Mathematical Creativity Using Multiple Solution Tasks (다양한 해결법이 있는 문제를 활용한 수학적 창의성 측정 방안 탐색)

  • Lee, Dae Hyun
    • School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Mathematical creativity in school mathematics is connected with problem solving. The purpose of this study was to analyse elementary students' the mathematical creativity using multiple solution tasks which required to solve a mathematical problem in different ways. For this research, I examined and analyzed the response to four multiple solution tasks according to the evaluation system of mathematical creativity which consisted of the factors of creativity(fluency, flexibility, originality). The finding showed that mathematical creativity was different between students with greater clarity. And mathematical creativity in tasks was different. So I questioned the possibility of analysis of students' the mathematical creativity in mathematical areas. According to the evaluation system of mathematical creativity of this research, mathematical creativity was proportional to the fluency. But the high fluency and flexibility was decreasing originality because it was easy for students to solve multiple solution tasks in the same ways. So, finding of this research can be considered to make the criterion in both originality in rare and mathematical aspects.

  • PDF

A Study on Teaching Method of Area Formulas in Plane Figures - Inductive Reasoning vs. Problem Solving - (평면도형의 넓이 지도 방법에 대한 고찰 - 귀납적 방법 대 문제해결식 방법 -)

  • Kang, Moonbong;Kim, Jeongha
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • Korean students are taught area formulas of parallelogram and triangle by inductive reasoning in current curriculum. Inductive thinking is a crucial goal in mathematics education. There are, however, many problems to understand area formula inductively. In this study, those problems are illuminated theoretically and investigated in the class of 5th graders. One way to teach area formulas is suggested by means of process of problem solving with transforming figures.

Case Analysis of Problem Solving Process Based on Brain Preference of Mathematically Gifted Students -Focused on the factors of Schoenfeld's problem solving behavior- (수학영재들의 뇌선호유형에 따른 문제해결 과정 사례 분석 -Schoenfeld의 문제해결 행동요인을 중심으로-)

  • Kim, Jae Hee;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2013
  • The purpose of this study is to analyze selection of factors of Schoenfeld's problem solving behavior shown in problem solving process of mathematically gifted students based on brain preference of the students and to present suggestions related to hemispheric lateralization that should be considered in teaching such students. The conclusions based on the research questions are as follows. First, as for problem solving methods of the students in the Gifted Education Center based on brain preference, the students of left brain preference showed more characteristics of the left brain such as preferring general, logical decision, while the students of right brain preference showed more characteristics of the right brain such as preferring subjective, intuitive decision, indicating that there were differences based on brain preference. Second, in the factors of Schoenfeld's problem solving behavior, the students of left brain preference mainly showed factors including standardized procedures such as algorithm, logical and systematical process, and deliberation, while the students of right brain preference mainly showed factors including informal and intuitive knowledge, drawing for understanding problem situation, and overall examination of problem-solving process. Thus, the two types of students were different in selecting the factors of Schoenfeld's problem solving behavior based on the characteristics of their brain preference. Finally, based on the results showing that the factors of Schoenfeld's problem solving behavior were differently selected by brain preference, it may be suggested that teaching problem solving and feedback can be improved when presenting the factors of Schoenfeld's problem solving behavior selected more by students of left brain preference to students of right brain preference and vice versa.

  • PDF

A Study on Solving Triangle Construction Problems Given by a Midpoint of Side and Other Two Points (한 변의 중점과 다른 두 점이 주어진 삼각형 작도문제의 해결에 대한 연구)

  • Han, In-Ki;Lee, Jeong-Soon
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.4
    • /
    • pp.365-388
    • /
    • 2009
  • In this paper we solve various triangle construction problems given by three points(a midpoint of side and other two points). We investigate relation between these construction problems, draw out a base problem, and make hierarchy of solved construction problems. In detail we describe analysis for searching solving method, and construction procedure of required triangle.

  • PDF