• Title/Summary/Keyword: 수학개념구조

Search Result 160, Processing Time 0.139 seconds

수학 문제의 구조 규명에 관한 연구

  • Han, In-Gi
    • Communications of Mathematical Education
    • /
    • v.11
    • /
    • pp.279-290
    • /
    • 2001
  • 교사와 학생사이의 수학적 활동의 대표적인 매개체가 수학 문제이다. 그러나, 수학 교육 분야에서 객관화된 연구 대상으로서 수학 문제에 대한 개념 규정, 수학 문제의 분류, 수학 문제의 구조 등에 관한 심도있는 연구는 드물다. 본 연구에서는 객관적인 대상으로서의 수학 문제 자체에 대한 분석적 고찰을 통해, 수학 문제에 대한 개념 규정, 수학 문제의 특성들, 그리고 수학 문제의 구조에 대한 본질을 규명할 것이다.

  • PDF

학습 구조차트 구성을 통한 수학수업이 고등학생들의 학업에 미치는 영향

  • Baek, Eun-Jeong
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.161-166
    • /
    • 2003
  • 본 연구는 학습 구조차트 구성을 통하여 고등학교 수학의 학습내용을 구조적 ${\cdot}$ 체계적으로 조직화시켜 학생들로 하여금 학습 내용의 효과적인 이해와 상호 관련성을 촉진시키고 학습 내용의 조직화 및 구조화 활동이 고등학생들의 학업에 미치는 영향을 조사하는데 그 목적이 있다. 본 연구에 따르면 수학 학업성취도가 상인 학생은 문제풀이시 머릿속에서 차트를 그리게 되고 여러 가지 개념을 나열하여 조작할 수 있는 능력이 생겼으며 문제 유형에 맞춘 학습 보다는 어떤 개념들이 문제풀이에 사용되었으며 이러한 개념들이 어떻게 나열되는지에 대한 학습으로 관심이 전환되었다. 수학학업 성취도가 하인 학생들은 학습 구조차트의 구성에만 만족하는 편이며 선행지식의 부족으로 복합적인 개념의 문제풀이에 있어서는 여전히 어려움을 경험하고 있었다. 성적이 낮은 학생일수록 개념에 대한 구조화와 조직화에 대한 어려움이 많은 것으로 보여 이들 학생들에 대한 장기적인 연구가 필요하다고 본다.

  • PDF

An Analysis on Effects of the Mindmap Note-Taking for the Formation of the Mathematical Concepts Structure and the Mathematical Creativity. (마인드맵 노트활동이 수학개념구조 형성과 수학적 창의력에 미치는 효과분석)

  • Kim Won Kyung;Song Soon Ja
    • School Mathematics
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2004
  • This study was carried out to investigate effects of the mindmap note-taking for the formation of the mathematical concepts structure and the matjematical creativity. Two classes were randomly chosen for this study from the third grade students of a middle school located in a medium size city. Thirty one lecture hours of the mindmap note-taking on the quadratic equation and functions were administered to the experimental class of 41 students, while same lecture hours of the ordinary instruction on the same contents were administered to the control class of 40 students. It was shown from this experiment that there ware significant evidences of improvement both in the formation of students' mathematical concepts structure and mathematical creativity through the mindmap note-taking lecture. Hence, the mindmap note-taking lecture is suggested for the improvement in the formation of student's mathematical concepts structure and mathematical creativity.

  • PDF

Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line (척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석)

  • Park, Eun-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • Size/scale is a central idea in the science curriculum, providing explanations for various phenomena. However, few studies have been conducted to explore student understanding of this concept and to suggest instructional approaches in scientific contexts. In contrast, there have been more studies in mathematics, regarding the use of number lines to relate the nature of numbers to operation and representation of magnitude. In order to better understand variations in student conceptions of size/scale in scientific contexts and explain learning difficulties including alternative conceptions, this study suggests an approach that links mathematics with the analysis of student conceptions of size/scale, i.e. the analysis of mathematical structure and reasoning for a number line. In addition, data ranging from high school to college students facilitate the interpretation of conceptual complexity in terms of mathematical development of a number line. In this sense, findings from this study better explain the following by mathematical reasoning: (1) varied student conceptions, (2) key aspects of each conception, and (3) potential cognitive dimensions interpreting the size/scale concepts. Results of this study help us to understand the troublesomeness of learning size/scale and provide a direction for developing curriculum and instruction for better understanding.

College Students' Conceptions of Mathematics: A Comparison of Korean Students and American Students (대학생의 수학 개념: 한국 학생과 미국 학생의 비교)

  • JKang, Ok Ki
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • 이 논문은 수학적 개념의 뜻과 과 중요성을 살펴본 다음, 연구자가 소속되어 있는 한국의 대학생과 연구자가 연구년 동안 강의한 바 있는 미국의 대학생이 갖고 있는 수학적 개념의 수준에 대하여 조사하여 보고, 그 차이점을 비교하여 수학교육의 개선을 위한 시사점을 찾아보고자 하였다. 본 연구는 수학적 개념을 수학적 지식의 구성, 수학적 지식의 구조, 수학적 지식의 현상, 수학을 행하기, 수학적 아이디어의 가치 인식, 구성으로서의 학습, 유용한 노력으로서의 수학으로 분류하고 각 개념에 대한 양국 학생들의 인식 정도를 설문조사 방식으로 조사하였다. 본 연구에서 한국 학생들은 수학적 개념에 대한 7개의 영역 중에서 '수학적 지시의 현상', '수학을 행하기'를 제외한 5개의 영역에서 더 높은 수준을 보였다. 앞으로 한국의 수학교육은 수학을 실제로 행하는 활동을 더욱 강조하여야 할 것이다.

  • PDF

수학의 관계적 이해를 위한 스키마식 수업 모델 제시

  • Kim, Seong-Suk;Lee, Sang-Deok;Kim, Hwa-Su
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.61-70
    • /
    • 2001
  • 수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 이렇게 추상된 것들을 모아 분류를 하고 그 다음에 이름을 붙이는 것이 바로 개념이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 이 개념들은 여러 가지 모양으로 결합하여 스키마라고 부르는 개념 구조를 형성하게 되는데, 이 스키마는 수학적 사고를 하는데 매우 중요한 역할을 하여 수학을 개념적으로 이해하는데 도움을 주며, 새로운 지식을 얻는데 필요한 필수적인 도구가 된다. 본 논문에서는 연속적인 수열의 합의 공식에 대하여 학생들이 Skemp가 말한 '관계적 이해'를 할 수 있도록 스키마를 이용하여 문제를 해결할 수 있는 모델과 원주의 스키마를 이용한 생활 속의 문제를 제시하여 학생들이 공식을 암기하기보다는 수학의 구조를 파악하고 연계성을 이해함으로서 능동적인 구성활동을 유발하여 수학에 대한 흥미를 느낄 수 있도록 도움을 주고자 한다.

  • PDF

A Study on the Structural Conception Formation of the Center of Mass Concept (질량중심 개념의 구조적 개념 형성에 관한 연구)

  • Choi, Byung Chul
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2016
  • We are able to analyze a social or a natural phenomenon by using the conception. if we understand a concept of an object. However it is not easy to understand a concept of an object. The process of comprehending the concept is a long rigorous mental journey. Hence, understanding concepts has been emphasized in studies in education. Previous studies demonstrate that conception has a dual nature, which has both an operational and a structural nature. We are able to acknowledge that structural conception develops from an operating conception. Nevertheless, discovering a dual nature of conception and knowing whether students acquired the dual nature, especially the structural nature are difficult to achieve. In this research, I examine the operational and the structural nature of a center of mass conception and analyze whether students acquire structural nature of the center of mass conception, and find implications which we would do to build the structural conception on a concept.

The Operational Approach and Structural Approach to the Mathematical Concepts - Focusing on exponential function and logarithmic function - (수학적 개념에 대한 조작적 접근과 구조적 접근 - 지수함수와 로그함수를 중심으로 -)

  • Kim, Bu-Yoon;Kim, So-Young
    • Communications of Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.499-514
    • /
    • 2007
  • In modern mathematic education, the development of mathematical ability based on the understanding of mathematical concepts has been emphasized in curriculum and teaching methodology. Also, in schools, most math teachers stress the importance of mathematical concepts in doing math well. Thus, in this paper, we outlined the development of mathematical concepts through the literature survey. And then, based on the Sfard's definition of mathematical concepts, which classifies math concepts into the operational approach and structural approach, we analyzed the math concepts of exponential function and logarithmic function units in three highschool math textbooks. As the result, we found that the textbook authors used different approach for the same concepts, and, at the same time, they used both approaches to help develop the students' math concepts.

  • PDF

Analysis Study of Mathematical Problem Structure through Concept Map (Concept Map을 통한 수학 문제의 구조 분석 연구)

  • Suh, Bo Euk
    • Communications of Mathematical Education
    • /
    • v.32 no.1
    • /
    • pp.37-57
    • /
    • 2018
  • In the early days, the use of concept maps in mathematics education focused on how to represent mathematical ideas in the concept map. In recent years, however, concept maps have proved beneficial for improving problem solving ability. Conceptual diagrams can be used for collaboration among students, tools for exploring problems, tools for introducing problem structures, tools for developing and systematizing knowledge systems. In this study, we focused on the structure analysis of mathematical problems using Concept Map based on the analysis of previous research. In addition, we have devised a method of using concept maps for problem analysis and a method of analysis of systematic mathematical problem structure. The method developed in this study was found to have significant value by applying to the university scholastic ability test.

소수의 관계적이해를 위한 스키마식 수업이 학습자에게 미치는 영향

  • Lee, Sang-Deok;Kim, Hwa-Su;Kim, Seong-Suk
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.165-173
    • /
    • 2003
  • 수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 그리고 이 추상들이 모여 분류(유사성을 기초로 해서 우리의 경험을 함께 묶는 것)가 되고 그 다음에 이름이 붙여진다. 이것이 바로 개념(concept)이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 그리고 이 개념들은 여러 가지 모양으로 결합하여 스키마(Schema)라고 부르는 개념 구조를 형성하게 되는데, 이 스키마(Schema)는 수학적 사고를 하는데 매우 중요한 역할을 한다. 본 논문에서는 기존의 초등학교 교과서의 소수의 관한 내용에서 교차연결고리가 부족한 부분을 보충한 스키마식 수업 모델을 제시하여 수학의 연계성과 위계성을 강조함으로써 학생들로 하여금 수학의 구조를 파악하게 하여 수학에 대한 흥미와 필요성을 알게 하는데 그 목적을 두고 있다.

  • PDF