• 제목/요약/키워드: 수학개념구조

검색결과 160건 처리시간 0.023초

수학 문제의 구조 규명에 관한 연구

  • 한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제11권
    • /
    • pp.279-290
    • /
    • 2001
  • 교사와 학생사이의 수학적 활동의 대표적인 매개체가 수학 문제이다. 그러나, 수학 교육 분야에서 객관화된 연구 대상으로서 수학 문제에 대한 개념 규정, 수학 문제의 분류, 수학 문제의 구조 등에 관한 심도있는 연구는 드물다. 본 연구에서는 객관적인 대상으로서의 수학 문제 자체에 대한 분석적 고찰을 통해, 수학 문제에 대한 개념 규정, 수학 문제의 특성들, 그리고 수학 문제의 구조에 대한 본질을 규명할 것이다.

  • PDF

학습 구조차트 구성을 통한 수학수업이 고등학생들의 학업에 미치는 영향

  • 백은정
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제15권
    • /
    • pp.161-166
    • /
    • 2003
  • 본 연구는 학습 구조차트 구성을 통하여 고등학교 수학의 학습내용을 구조적 ${\cdot}$ 체계적으로 조직화시켜 학생들로 하여금 학습 내용의 효과적인 이해와 상호 관련성을 촉진시키고 학습 내용의 조직화 및 구조화 활동이 고등학생들의 학업에 미치는 영향을 조사하는데 그 목적이 있다. 본 연구에 따르면 수학 학업성취도가 상인 학생은 문제풀이시 머릿속에서 차트를 그리게 되고 여러 가지 개념을 나열하여 조작할 수 있는 능력이 생겼으며 문제 유형에 맞춘 학습 보다는 어떤 개념들이 문제풀이에 사용되었으며 이러한 개념들이 어떻게 나열되는지에 대한 학습으로 관심이 전환되었다. 수학학업 성취도가 하인 학생들은 학습 구조차트의 구성에만 만족하는 편이며 선행지식의 부족으로 복합적인 개념의 문제풀이에 있어서는 여전히 어려움을 경험하고 있었다. 성적이 낮은 학생일수록 개념에 대한 구조화와 조직화에 대한 어려움이 많은 것으로 보여 이들 학생들에 대한 장기적인 연구가 필요하다고 본다.

  • PDF

마인드맵 노트활동이 수학개념구조 형성과 수학적 창의력에 미치는 효과분석 (An Analysis on Effects of the Mindmap Note-Taking for the Formation of the Mathematical Concepts Structure and the Mathematical Creativity.)

  • 김원경;송순자
    • 대한수학교육학회지:학교수학
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2004
  • 본 연구에서는 개념의 조직화, 사고의 창의가 가능한 마인드맵 노트활동이 수학 학습에 미치는 영향을 알아보기 위해서 마인드맵 노트활동을 적용한 수업방식과 기존의 교사주도식 수업방식에서의 수학개념구조 형성과 수학적 창의력에 대한 효과를 분석하였다. 중학교 3학년 학생을 대상으로 약 3개월 동안 31차시의 마인드맵 노트활동을 적용하여 수업을 한 후, 수학개념구조 검사지와 수학적 창의력 검사지, 그리고 면담자료로 평가한 결과는 다음과 같다. 첫째, 마인드맵을 활용한 수업방식이 기존의 교사주도식 수업방식에 비해 학습자의 개념구조형성 신장에 효과가 있는 것으로 나타났다. 둘째, 마인드맵을 활용한 수업이 기존의 교사주도식 수업에 비해 학습자의 수학적 창의력 신장에 효과가 있는 것으로 나타났고, 특히 수학적 창의력의 하위 요소 중 유창성과 응통성 신장에 효과가 있었다. 따라서 수학 개념구조 형성과 수학적 창의력 신장을 위해서 학교수업에서 마인드맵 노트활동의 도입을 제언한다.

  • PDF

척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석 (Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line)

  • 박은정
    • 한국과학교육학회지
    • /
    • 제34권4호
    • /
    • pp.335-347
    • /
    • 2014
  • 관찰과 측정을 기본으로 하는 과학의 교과에서 "크기(size)"와 그를 나타내는 "척도(scale)"는 물질의 물리적 속성과 과학적 현상을 이해하도록 돕는 중요한 개념이다. 또한, 사물의 수, 크기나 양을 어림잡거나 그것을 정확하게 표현하는 것은 수학에서 수의 개념 형성과 발달, 표현법의 습득, 나아가서는 연산에 관한 사고로의 발전과 관련되어있는 문제라고 볼 수 있어 "크기와 척도" 개념은 수학과 과학의 기본이며 동시에 두 교과를 연결하는 개념이다. 일반적으로 "크기와 척도"는 쉬운 개념이라 생각되지만, 실제 학생들은 물질의 크기를 제대로 이해하지 못하거나 척도로 나타내는 것을 어려워하는 것을 알 수 있다. 이는 단지 물질의 크기를 정확히 알지 못하는 정확성에 관한 오류로만 그치는 것이 아니라 종종 연관된 개념을 추론하거나 개념을 확장해 과학의 현상을 이해하는 과정에서의 어려움으로 이어진다. 이와 관련해 수와 연산에 관한 개념이해와 학습의 어려움에 관한 수학교육분야의 연구는 다양하게 진행되었지만, 과학교육분야에서의 연구는 많지 않았다. 본 연구에서는 "크기와 척도"에 관한 학생들의 사고를 더 잘 이해하고 과학 학습의 어려움에 관한 원인을 분석하기 위해 수학적 구조분석을 적용하였다. 수학교육에서 설명한 수 개념의 발달에 따른 사고유형(덧셈이전의 사고, 덧셈적 사고-additive reasoning, 곱셈적 사고-multiplicative reasoning)을 적용하여 7단계의 수학적 구조를 만들고 이를 이용하여 "크기와 척도"와 관련된 과제를 수행한 학생들의 인터뷰 데이터를 체계적으로 분석하였다. 수학적 구조를 바탕으로 한 개념 틀은 다양한 학생들의 사고를 분석하는 기준이 되었고, 또한 학생들이 겪는 개념이해의 어려움을 해석하는 도구가 되었다. 수 개념의 발달에 맞춘 수학적 사고구조를 적용한 분석은 학생들의 개념 유형의 구분을 명확히 하였고 설명이 모호했던 전환 단계(transition stage) 유형을 밝혀내어 수업에서 고려되어야 할 점들을 구체적으로 드러내었다. 이는 수학과 과학, 두 교과 간의 틈을 줄일 뿐 아니라 연결점을 찾아 학생들의 개념이해와 어려움의 원인을 분석하는데 폭넓은 시각을 제공한다는 점에서 최근 많은 관심을 받고 있는 STEM 혹은 수학과 과학의 융합 수업을 위한 소재로의 가능성을 제시해준다.

대학생의 수학 개념: 한국 학생과 미국 학생의 비교 (College Students' Conceptions of Mathematics: A Comparison of Korean Students and American Students)

  • JKang, Ok Ki
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2003
  • 이 논문은 수학적 개념의 뜻과 과 중요성을 살펴본 다음, 연구자가 소속되어 있는 한국의 대학생과 연구자가 연구년 동안 강의한 바 있는 미국의 대학생이 갖고 있는 수학적 개념의 수준에 대하여 조사하여 보고, 그 차이점을 비교하여 수학교육의 개선을 위한 시사점을 찾아보고자 하였다. 본 연구는 수학적 개념을 수학적 지식의 구성, 수학적 지식의 구조, 수학적 지식의 현상, 수학을 행하기, 수학적 아이디어의 가치 인식, 구성으로서의 학습, 유용한 노력으로서의 수학으로 분류하고 각 개념에 대한 양국 학생들의 인식 정도를 설문조사 방식으로 조사하였다. 본 연구에서 한국 학생들은 수학적 개념에 대한 7개의 영역 중에서 '수학적 지시의 현상', '수학을 행하기'를 제외한 5개의 영역에서 더 높은 수준을 보였다. 앞으로 한국의 수학교육은 수학을 실제로 행하는 활동을 더욱 강조하여야 할 것이다.

  • PDF

수학의 관계적 이해를 위한 스키마식 수업 모델 제시

  • 김성숙;이상덕;김화수
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제14권
    • /
    • pp.61-70
    • /
    • 2001
  • 수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 이렇게 추상된 것들을 모아 분류를 하고 그 다음에 이름을 붙이는 것이 바로 개념이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 이 개념들은 여러 가지 모양으로 결합하여 스키마라고 부르는 개념 구조를 형성하게 되는데, 이 스키마는 수학적 사고를 하는데 매우 중요한 역할을 하여 수학을 개념적으로 이해하는데 도움을 주며, 새로운 지식을 얻는데 필요한 필수적인 도구가 된다. 본 논문에서는 연속적인 수열의 합의 공식에 대하여 학생들이 Skemp가 말한 '관계적 이해'를 할 수 있도록 스키마를 이용하여 문제를 해결할 수 있는 모델과 원주의 스키마를 이용한 생활 속의 문제를 제시하여 학생들이 공식을 암기하기보다는 수학의 구조를 파악하고 연계성을 이해함으로서 능동적인 구성활동을 유발하여 수학에 대한 흥미를 느낄 수 있도록 도움을 주고자 한다.

  • PDF

질량중심 개념의 구조적 개념 형성에 관한 연구 (A Study on the Structural Conception Formation of the Center of Mass Concept)

  • 최병철
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2016
  • 우리가 어떤 한 개념을 형성하면 우리는 그 개념을 이용하여 어떤 사회 현상 또는 자연현상을 분석할 수 있는 힘을 갖게 된다. 그러나 어떤 대상에 대한 한 개념을 형성하는 것은 쉬운 일이 아니다. 한 개인이 어떤 개념이든 그 개념을 이해하는 과정은 실로 험난한 정신적 여정이다. 이런 이유로 개념의 이해에 관한 문제는 교육에서 늘 연구의 대상이 되어왔다. 우리는 개념에 대한 선행연구를 통해 개념이 이중적 본성 즉, 조작적 특성과 구조적 특성을 갖고 있음을 알게 되었다. 또한 한 개념은 조작적 개념에서 구조적 개념으로 발전한다는 것을 이전 연구에서 발견할 수 있다. 그러나 어떤 한 개념의 이중적 본성을 안다는 것은 매우 어려운 일이며 특히 학생들이 한 개념의 구조적 개념을 이해하였는지 알기는 더더욱 쉽지 않다. 이에 본 연구에서는 질량중심의 개념에 대한 조작적 특성과 구조적 특성을 알아보고, 학생들이 질량중심 개념에 대하여 그 개념을 조작적 접근을 통하여 구조적 개념으로 어느 정도 형성하게 되는지 검사와 면담을 통하여 분석하고자 한다. 또한 이러한 분석을 통하여 한 개념에 대한 구조적 개념을 형성하도록 하기 위해서 무엇을 해야 하는지 그 함의하는 바를 찾고자한다.

수학적 개념에 대한 조작적 접근과 구조적 접근 - 지수함수와 로그함수를 중심으로 - (The Operational Approach and Structural Approach to the Mathematical Concepts - Focusing on exponential function and logarithmic function -)

  • 김부윤;김소영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제21권3호
    • /
    • pp.499-514
    • /
    • 2007
  • 현대수학교육에서는, 수학적 개념에 대한 이해를 바탕으로 한 수학적 능력의 개발이 교육과정과 교수 방법의 영역 등에서 강조되고 있다. 또한, 학교 현장에서도, 대부분의 교사들이 수학을 잘 하기 위해서는 수학적 개념이 중요하다는 점을 강조하고 있다. 따라서, 이 논문에서는, 문헌 연구를 통하여 수학적 개념의 발달과정을 개괄하였다. 그런 다음, 수학적 개념을 조작적 접근과 구조적 접근으로 정의한 Sfard의 관점에 근거하여, 세 고등학교 수학교과서의 지수함수와 로그함수 단원의 수학적 개념을 분석하였다. 분석의 결과, 교과서 필자들은 동일한 수학적 개념에 대해서도 다른 접근 방법을 사용하고 있다는 사실과 학생들의 수학적 개념의 발달을 돕기 위하여 두 접근 방법을 모두 사용하고 있다는 사실을 발견할 수 있었다.

  • PDF

Concept Map을 통한 수학 문제의 구조 분석 연구 (Analysis Study of Mathematical Problem Structure through Concept Map)

  • 서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제32권1호
    • /
    • pp.37-57
    • /
    • 2018
  • 수학교육에서 Concept Map(개념그림)을 활용하기 시작한 초기에는 Concept Map이라는 그림 안에 수학적 아이디어를 어떻게 표상할 수 있느냐에 초점이 맞추어져 있었다. 하지만, 최근 연구에 따르면 Concept Map이 문제해결력과 밀접한 관련이 있다. 구체적으로 Concept Map은 학생들 사이의 협력적 문제해결의 도구, 문제를 탐구하기 위한 도구, 문제의 구조를 소개하기 위한 도구, 지식의 체계를 개발하고 체계화하는 도구 등으로 사용될 수 있다. 이에 본 연구에서는 Concept Map에 대한 선행연구 분석을 기반으로 Concept Map을 활용한 수학 문제의 구조 분석에 집중하였다. 그 결과 수학 문제 구조 분석을 위한 Concept Map의 활용 방법을 개발하였고, 개발된 자료를 적용하여 실제 수학 문제 분석에 적용함으로써 그 실현 가능성을 확인하였다. 본 연구 결과를 통해 수학 문제 구조의 파악, 수학과 교육과정 및 교과서와 일관성 있는 문제의 개발, 수학 문제의 난이도 분석 등에 효과적으로 활용될 것으로 기대된다.

소수의 관계적이해를 위한 스키마식 수업이 학습자에게 미치는 영향

  • 이상덕;김화수;김성숙
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제16권
    • /
    • pp.165-173
    • /
    • 2003
  • 수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 그리고 이 추상들이 모여 분류(유사성을 기초로 해서 우리의 경험을 함께 묶는 것)가 되고 그 다음에 이름이 붙여진다. 이것이 바로 개념(concept)이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 그리고 이 개념들은 여러 가지 모양으로 결합하여 스키마(Schema)라고 부르는 개념 구조를 형성하게 되는데, 이 스키마(Schema)는 수학적 사고를 하는데 매우 중요한 역할을 한다. 본 논문에서는 기존의 초등학교 교과서의 소수의 관한 내용에서 교차연결고리가 부족한 부분을 보충한 스키마식 수업 모델을 제시하여 수학의 연계성과 위계성을 강조함으로써 학생들로 하여금 수학의 구조를 파악하게 하여 수학에 대한 흥미와 필요성을 알게 하는데 그 목적을 두고 있다.

  • PDF