• Title/Summary/Keyword: 수평면

Search Result 916, Processing Time 0.027 seconds

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Film Dosimetry for Intensity Modulated Radiation Therapy : Dosimetric Evaluation (필름을 사용한 세기변조치료법에 대한 선량측정)

  • Ju Sang Gyu;Yeo Inhwan Jason;Huh Seung Jae;Choi Byung Ki;Park Young Hwan;Ahn Yong Chan;Kim Dae Yong;Kong Young Kun
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Purpose : X-ray film over responds to low-energy photons in relative photon beam dosimetry because its sensor is based on silver bromide crystals, which are high-Z molecules. This over-response becomes a significant problem in clinical photon beam dosimetry particularly in regions outside the penumbra. In intensity modulated radiation therapy (IMRT), the radiation field is characterized by multiple small fields and their outside-penumbra regions. Therefore, in order to use film dosimetry for IMRT, the nature the source of the over-response in its radiation field need to be known. This study is aimed to verify and possibly improve film dosimetry for IMRT. Materials and Method : Modulated beams were constructed by a combination of five or seven different static radiation fields using 6 MeV X-rays. In order to verify film dosimetry, we used X-ray film and an ion chamber were used to measure the dose profiles at various depths in a phantom. In addition, in order to reduce the over-response, 0.01 inch thick lead filters were placed on both sides of the film. Results : The measured dose profiles showed a film over-response at the outside-penumbra and low dose regions. The error increased with depths and approached 15% at a maximum for the field size of $15{\times}15cm^2$ at 10 cm depth. The use of filters reduced the error to 3%, but caused an under-response of the dose in a perpendicular set-up. Conclusion : This study demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy Photons. The use of filers can enhance the accuracy in film dosimetry for IMRT. In this regard, the use of optimal filter conditions is recommended.

Differential Horizontal Stress Ratio for Danyang Limestone with Vertical Transversely Isotropy (횡적등방성 특성을 갖는 단양 석회암의 수평응력차비 고찰)

  • Jang, Seonghyung;Hwang, Seho;Shin, Jehyun;Kim, Tae Youn
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • To develope shale play which is one of unconventional energy resources, horizontal drilling and hydraulic fracturing are necessary and those are applied to the place where the differential horizontal stress ratio (DHSR) is low. The differential horizontal stress ratio is generally calculated by the minimum and maximum horizontal stress, but it is also calculated from dynamic elastic constants and anisotropic parameters. In this study we analyzed anisotropic properties through the core samples from Danyang limestone and calculated DHSR. The three types of core samples shaped in three directions (vertical, parallel and 45 degree to bedding) were used for laboratory test. We measured P-, S-wave velocities, and density and then calculated dynamic elastic constants, compliance and DHSR. According to the results of the core sample analysis the calculated DHSR is 0.185. Thomsen parameters of the Danyang limestone used in this study are characterized by the P- and S-wave velocities varying along the bedding symmetry axis. It is observed that the DHSR value is more affected by the change in compliance value than the Poisson's ratio. It is necessary to measure SH-wave velocity for more correct petrophysical properties.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.

Real-time Forward Vehicle Detection Method based on Extended Edge (확장 에지 분석을 통한 실시간 전방 차량 검출 기법)

  • Ji, Young-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.35-47
    • /
    • 2010
  • To complement inaccurate edge information and detect correctly the boundary of a vehicle in an image, an extended edge analysis technique is presented in this paper. The vehicle is detected using the bottom boundary generated by a vehicle and the road surface and the left and right side boundaries of the vehicle. The proposed extended edge analysis method extracts the horizontal edge by merging or dividing the nearby edges inside the region of interest set beforehand because various noises deteriorates the horizontal edge which can be a bottom boundary. The horizontal edge is considered as the bottom boundary and the vertical edges as the side boundaries of a vehicle if the extracted horizontal edge intersects with two vertical edges which satisfy the vehicle width condition at the height of the horizontal edge. This proposed algorithm is more efficient than the other existing methods when the road surface is complex. It is proved by the experiments executed on the roads having various backgrounds.

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater I : Complex Blocks with Group Piles (블록식 방파제의 수평저항력 평가를 위한 실내모형실험 I : 무리말뚝으로 보강된 복합 블록의 거동)

  • Kang, Gichun;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.95-103
    • /
    • 2021
  • While the existing pile foundation had the role of supporting the superstructure or reducing the earth pressure, recently there are cases where it is integrated with the superstructure to increase the lateral resistance. This study aims to evaluate a lateral resistance of block-type breakwaters with group piles by modelling experiments. The lateral resistance and bending moments of the piles by penetrated depths for the piles were measured. As a result, it was found that the lateral resistance increased as the depth of embedment of the group piles. In particular, the lateral resistance was 1.52 times greater in the case where the pile embedded up to the riprap layer than the case where the pile was embedded into the block. For the bending moment, the rear piles ware larger than the front piles, and the outside piles were larger than the inside piles. The location of the maximum bending moment in the ground was shown at the interface between the riprap layer and the natural ground.

Design and Radiation Characteristics of Printed-Sleeve Monopole Antennas (프린트 슬리브 모노폴 안테나의 설계 및 복사 특성)

  • Seo Seung-Up;Choi Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.926-931
    • /
    • 2005
  • In this paper, the printed-sleeve monopole antenna which has the small size and the broadband characteristics, is presented and its radiation characteristics are investigated. To conform the broadband characteristics of the proposed antenna, the experimental antenna is designed, fabricated, and its radiation characteristics are measured in PCS band (1.75 GHz${\~}$1.87 GHz). It is shown that the designed antenna has the non-directional pattern in the horizontal plane, the directional pattern in the vertical plane, VSWR less than 1.5, and gain in 2.14 dBi${\~}$3.4 dBi. From these results, the proposed antenna is conformed as a broadband antenna which can be used for the mobile communication indoor antenna extensively.