• Title/Summary/Keyword: 수차 모형

Search Result 48, Processing Time 0.022 seconds

Optimum design of the finite schematic eye using spherical aberration (구면수차를 이용한 정밀모형안의 최적화)

  • 김상기;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.266-271
    • /
    • 2002
  • The finite schematic eye based on spherical aberration and Stiles-Crawford effect is designed by an optimization method. It consists of four aspherical surfaces. The radius of curvature, thickness, asphericity, and spherical aberration are used as constraints in the optimization process. Stiles-Crawford effect in the pupil is considered as a weighting value for optimum design. The designed schematic eye has effective focal length of 20.8169 mm, back focal length of 15.4820 mm, front focal length of -13.8528 mm, and image distance of 15.7150 mm. When the pupil diameter is 4 mm, the diameter of entrance pupil and exit pupil are 4.6919 mm and 4.2395 mm, respectively. From the data of 75 measured Korean emmetropic eyes, this finite schematic eye is designed first in Korea.

Analysis of Performance of Focused Beamformer Using Water Pulley Model Array (수차 모형 배열을 이용한 표적추정 (Focused) 빔형성기 성능분석)

  • 최주평;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.83-91
    • /
    • 2001
  • This paper proposes the Focused beamforming to estimate the location of target residing near to the observation platform in the underwater environment. The Focused beamforming technique provides the location of target by the coherent summation of a series of incident spherical waveforms considering distinct propagation delay times at the sensor array. But due to the movement of the observation platform and the variation of the underwater environment, the shape of the sensor array is no longer to be linear but it becomes distorted as the platform moves. Thus the Focused beamforming should be peformed regarding to the geometric shape variation at each time. To estimate the target location, the artificial image plane comprised of cells is constructed, and the delays are calculated from each cell where the target could be proximity to sensors for the coherent summation. After the coherent combining, the beam pattern can be obtained through the Focused beamforming on the image plane. Futhermore to compensate the variation of the shape of the sensor array, the paper utilizes the Nth-order polynomial approximation to estimate the shape of the sensor array obeying the water pulley modeling. Simulation results show the performance of the Focused beamforming for different frequency bands of the radiated signal.

  • PDF

A Simulation to Find Rotation Efficiency according to the Draft Changes of Waterwheel in Open Rectangular Channel (사각형 개수로에서의 수차 흘수 변화에 따른 회전 효율 파악을 위한 시뮬레이션)

  • Lee, Kyong-Ho;Park, Hee-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, simulations were carried out to determine the efficiency of the rotation efficiency according to the draft of waterwheel in open rectangular channel. In the small hydroelectric generators to get the highest efficiency of waterwheel is very important. But the presence of various elements(free water surface flow, non-uniform velocity distribution because of the waterways wall friction etc) makes it difficult to create a mathematical formula. In this paper, we made a scale model and perform a physical simulation where the draft, gradient and flux is variable. Scale modelling with 10-step draft, 3-step gradients and 2-step flux, as well were constructed then computerized automatic experimental system were configured to acquire the rotational efficiency vs. draft of itself. Rotational efficiency is analyzed as for the draft of waterwheel using the acquired data by varying the gradient and flux of canal. Reviewing the analyzed data, it is confirmed that phenomena of efficiency shown at previous and present experiment is similar and revealed that computerized system shows more sophisticated numerical figures.

Design of the Finite Schematic Eye with GRIN Crystalline Lens Considering Iris Eccentricity (홍채 편심을 고려한 GRIN 수정체를 갖는 정밀모형안 설계)

  • Kim, Bong-Hwan;Han, Sun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.61-64
    • /
    • 2011
  • Purpose: The purpose of this study was to design the finite model eye with GRIN lens similar to actual eye, which considered the effect of iris eccentricity on eyes. Methods: By using the finite model eye with Radial GRIN and Spherical GRIN, which were designed previously, the location of iris was eccentrically located by 0.5 mm in the direction of nose to show the same eye as actual one. For ray trace and design, Code V program of Optical Research Associates (ORA) was adopted. Results: Designed model eye was compared to actual eye depending on iris eccentricity and the model eye which showed reduced value was corrected according to actual eye to design the finite model eye. Conclusions: Ocular optical systems considered the point that iris was a rotational asymmetry and designed the finite model eye with GRIN lens, which was similar to actual eye, by considering the effect of iris eccentricity on eye.

Optical Performance Analysis of the Eye which it Follows in Iris Eccentricity (홍채 편심에 따른 눈의 광학적 성능 분석)

  • Kim, Bong-Hwan;Han, Sun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.2
    • /
    • pp.31-34
    • /
    • 2009
  • Purpose: We are to analyze optically how to affect the eye related with movement of the iris. Methods: Using the schematic eye to have the crystalline lens of the radial GRIN and the spherical GRIN forms that come to be planned in existing, the iris centre was moved 0.5 mm with nasal direction in order to be identical with the real eye. Also, considering that the iris centre move according to increase of the pupil size, the iris centre was moved 0.4 mm with temporal direction to analyze the optical performance change of the eye respectively. Results: Because of decrease in the spherical aberration, the schematic eye with nasal direction 0.5 mm eccentricity of the iris showed a different consequence plentifully compared with the performance of the real eye. Besides, the schematic eye with temporal direction 0.4 mm eccentricity of the iris showed that the spherical aberration somewhat increased. Conclusions: In case of design of the schematic eye with the similar real eye performance which the iris centre was moved 0.5 mm with nasal direction, we need to research about aspheric coefficient of optical constants of each refracting surface considering the performance change of a spherical aberration, a peripheral power error and astigmatism etc, owing to change of the real eye hence to be affected by the iris movement.

  • PDF

An Analysis of Optical Performance of the Finite Schematic Eye According to Iris Eccentricity and Visual Axis change (시축 변화와 홍채 편심에 따른 정밀모형안의 광학적 성능 분석)

  • Kim, Bong-Hwan;Han, Sun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.2
    • /
    • pp.151-154
    • /
    • 2010
  • Purpose: We investigated how the movement of iris and visual axis affects the finite schematic eye Methods: Using the schematic eye with the crystalline lens in the existing forms of the radial GRIN and the spherical GRIN, the iris centre was moved 0.5 mm in nasal direction and visual axis was tilted $5^{\circ}$ in same direction, with the additional degree of 2.5 down to locate the focal point in fovea. This study analyzed performance change of the optical system, designing it same as the real eye. Results: The whole aberration distribution showed a considerable difference in performance in comparison with the real eye; the biggest difference shown at the central field of optical system. The spherical aberration showed the biggest difference, and a peripheral power error and field curvature leaned toward (+) direction in aberration distribution. Conclusions: When designing the schematic eye with the performance similar with that of the real eye by taking into consideration the iris centre and visual axis, the aberration at the center field of optical system in particular should be corrected. Spherical aberration which showed the biggest difference should be corrected in the first place. In addition, a peripheral power error and field curvature that leaned toward (+) direction should be moved toward (-) direction.

Lens system design for head mounted display using schematic eyes (정밀모형안을 이용한 Head Mounted Display용 렌즈계 설계)

  • 박성찬;안현경
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2003
  • We discussed the design of lens module schematic eyes equivalent to finite model eyes, which are used to model the human eye based on spherical aberration and Stiles-Crowford effect. The optical system for head mounted display (HMD) is designed and evaluated using lens module schematic eyes. In addition to a compact HMD system, an optical system with high Performance is required. To satisfy these requirements, we used diffractive optical elements and aspheric surfaces so that the color and mono-chromatic aberrations were corrected. The optical system for HMD is composed of 0.47 inch micro-display of SVGA grade with 480,000 pixels, a plastic hybrid lens for the virtual image, and the lens module schematic eyes. The designed optical system fulfills the current specifications of HMD: such as, EFL of 31.25 mm, FOV of 24H$\times$18V$\times$30D degrees, and overall length of 59.1 mm. As a result, we could design an optical system useful for HMD; the system is expected to be comfortable while the user wears it.

Model making for water wheel control system of Heumgyeonggaknu

  • Kim, Sang Hyuk;Ham, Seon Young;Lee, Yong Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.86.1-86.1
    • /
    • 2014
  • 흠경각루(欽敬閣漏)는 1438년 장영실이 제작한 자동물시계로 천상의 모습을 재현한 천문시계의 역할을 갖추었다. 흠경각(欽敬閣)은 세종의 통치 철학을 세우는 중요한 공간이었다. 이곳에 설치한 흠경각루는 가산(假山) 외부에 빈풍사시의 풍경을 그려서 농사짓는 백성들의 어려움을 살필 수 있도록 하였고, 의기(倚器)를 설치하여 기울어진 그릇을 권력에 비유하여 조심하도록 하였다. 또한 12지신(支神)과 12명의 옥녀(玉女), 4신(청룡, 백호, 주작, 현무)과 4명의 옥녀, 그리고 종 북 징을 타격하여 시간을 알려주는 다양한 시보인형들과 태양운행을 살펴 볼 수 있는 종합적 연출이 가미된 당시의 첨단적 시계였다. 이러한 흠경각루의 작동은 가산 내부에 위치한 물시계와 수차에 의해서 발생된다. 물시계로부터 얻어지는 일정량의 물에 의해 수차가 회전하고, 천형장치를 활용해 회전속도를 제어할 수 있었다. 본 연구에서는 흠경각루의 동력발생과정을 유기적으로 살펴 볼 수 있도록 개념 설계를 실시하였다. 또한 3D 모델링과 기초설계도를 작도하여 실험에 활용할 수 있는 수차제어시스템 모형을 제작하였다.

  • PDF

Visual Performances of the Corrected Navarro Accommodation-Dependent Finite Model Eye (안구의 굴절능 조절을 고려한 수정된 Navarro 정밀모형안의 시성능 분석)

  • Choi, Ka-Ul;Song, Seok-Ho;Kim, Sang-Gee
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.337-344
    • /
    • 2007
  • In recent years, there has been rapid progress in different areas of vision science, such as refractive surgical procedures, contact lenses and spectacles, and near vision. This progress requires a highly accurate modeling of optical performance of the human eyes in different accommodation states. A new novel model-eye was designed using the Navarro accommodation-dependent finite model eye. For each of the vergence distances, ocular wavefront error, accommodative response, and visual acuity were calculated. Using the new model eye ocular wavefront error, accommodation dative response, and visual acuity are calculated for six vergence stimuli, -0.17D, 1D, 2D, 3D, 4D and -5D. Also, $3^{rd}\;and\;4^{th}$ order aberrations, modulation transfer function, and visual acuity of the accommodation-dependent model eye were analyzed. These results are well-matched to anatomical, biometric, and optical realities. Our corrected accommodation-dependent model-eye may provide a more accurate way to evaluate optical transfer functions and optical performances of the human eye.

Prediction of visual performance using contrast sensitivity function and modulation transfer function (대비감도함수와 변조전달함수를 이용한 시기능 예측)

  • Kim Sang Gee;Park Sung Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.461-468
    • /
    • 2004
  • A finite model eye of visual acuity 24/20 in emmertropia was presented. We determined the image intensity profile on retina using optical transfer function of model eye, and compared with clinical data. The retinal contrast sensitivity function based on the Stiles-Crawford effect, photopic response, diffraction, aberration, retinal contrast sensitivity, and pupil size is calculated. Visual acuity for human eye could be predicted by examining the modulation transfer function of a bar target and retinal contrast sensitivity function. This visual acuity was evaluated for pupil diameters ranging from 1 to 8 mm.