• Title/Summary/Keyword: 수집최적화

Search Result 455, Processing Time 0.026 seconds

Mobile Health Applications Adoption for the Management of Smartphone Overdependence (스마트폰 과의존 관리를 위한 모바일 건강관리 어플리케이션 수용 모델)

  • Rho, Mi Jung
    • Korea Journal of Hospital Management
    • /
    • v.26 no.4
    • /
    • pp.12-28
    • /
    • 2021
  • Purposes: The convenience of smartphones have lead to people's overdependence on devices, which may cause obstacles in daily life. It is useful to manage smartphone overdependence by using mobile health applications. We aimed to investigate the acceptance of mobile health applications designed to help in the management of smartphone overdependence. Methodology/Approach: We developed the extended model based on the Unified Theory of Acceptance and Use of Technology 2. The modified model had six hypotheses with six variables: result demonstrability, performance expectancy, effort expectancy, social influence, perceived risk, and behavioral intention to use. We randomly included 425 smartphone users in an online survey in 2020. A structural equation model was used to estimate the significance of the path coefficients. Findings: Performance expectancy and social influence had a very strong direct positive association with behavioral intention to use. Result demonstrability had a direct positive association with performance expectancy. Perceived risk had a strong direct negative association with performance expectancy. Performance expectancy and social influence were the main factors directly influencing the acceptance of mobile health applications for the management of smartphone overdependence. Practical Implications: We demonstrated smartphone users' acceptance of mobile health applications for smartphone overdependence management. Based on these results, we could develop mobile health applications more effectively.

Development of a modified model for predicting cabbage yield based on soil properties using GIS (GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발)

  • Choi, Yeon Oh;Lee, Jaehyeon;Sim, Jae Hoo;Lee, Seung Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.449-456
    • /
    • 2022
  • This study proposes a deep learning algorithm to predict crop yield using GIS (Geographic Information System) to extract soil properties from Soilgrids and soil suitability class maps. The proposed model modified the structure of a published CNN-RNN (Convolutional Neural Network-Recurrent Neural Network) based crop yield prediction model suitable for the domestic crop environment. The existing model has two characteristics. The first is that it replaces the original yield with the average yield of the year, and the second is that it trains the data of the predicted year. The new model uses the original field value to ensure accuracy, and the network structure has been improved so that it can train only with data prior to the year to be predicted. The proposed model predicted the yield per unit area of autumn cabbage for kimchi by region based on weather, soil, soil suitability classes, and yield data from 1980 to 2020. As a result of computing and predicting data for each of the four years from 2018 to 2021, the error amount for the test data set was about 10%, enabling accurate yield prediction, especially in regions with a large proportion of total yield. In addition, both the proposed model and the existing model show that the error gradually decreases as the number of years of training data increases, resulting in improved general-purpose performance as the number of training data increases.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Optimizing Locations for Micro-mobility Parking Area based on User Big-data Analysis (빅데이터 기반 공유형 마이크로 모빌리티의 주차시설 입지 최적화 연구)

  • Choi, Nakhyeon;Kim, Junghwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.195-206
    • /
    • 2023
  • Most of the Micro-mobility parking in Korea use Dockless system. However, Dockless can result in cluttering, infrastructure deficiencies, and safety challenges as has been observed in cities. It is necessary to introduce a Station Parking system in order to solve the drawbacks of the dockless, but the introduction without engineering has low accessibility and induces side effects. In this study, to decide optimal location about number of the Micro-mobility Station, we has been applied the MCLP model about the coverage range, usage demand, usage time in order to classify the type of Micro-mobility Station. For the MCLP, User Date input to reflect realistic demand in Bundang new town, Korea. The result show that the optimal number of facilities in 400 m was 146, and the coverage ratio was 99.83 %, which was most suitable coverage for solving the parking problem. We also classified the demand into 4 levels and the usage time into 3 levels, and by crossing them, we were able to classify the Parking lot types into 12 types. It is possible to propose strategic policies in the installation and operation of Micro-mobility Parking System.

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.

Design and Implementation of IEC62541-based Industry-Internet of Things Simulator for Meta-Factory (메타팩토리를 위한 IEC62541기반 IIoT·시뮬레이터 설계 및 구현)

  • Chae-Young Lim;Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.789-795
    • /
    • 2023
  • Digital-Twin are recognized as an important core technology for the realization of Smart Factories by simulating and optimizing the monitoring and predictive maintenance of manufacturing equipment and the operation of production lines in a digital space. To implement this system, we adopt the IEC62541-based OPC-UA (Open Platform Communications Unified-Architecture) Protocol, which has strengths in interoperability and connectivity between heterogeneous platforms. Therefore, In this paper, We designed and implemented an IIoT(Industry Internet of Things) system that connects heterogeneous platforms, and developed an OPC-UA simulator based on IEC 62541. We will present whether the data will be applied to the Digital-Twin Platform and whether it will work, and proceed with performance tests and evaluations. We evaluate the operation performance and OPC-UA performance of the Digital-Twin platform lightened by the proposed device, and present the optimal IEC62514-based simulator system. We proceeded with the performance evaluation of sending and receiving data with OPC-UA wrapping with the proposed simulator, and found that a lightweight Digital-Twin platform can be operated. This research can apply the OPC-UA protocol for implementing smart factory and meta-factory in the manufacturing shop floor with limited resources, avoiding the waste of time and space on the shop floor through the OPC-UA simulator. We expect that this will contribute to a significant improvement in efficiency by minimizing.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Designing Digital Twin Concept Model for High-Speed Synchronization (고속 동기화를 위한 디지털트윈 개념 모델 설계)

  • Chae-Young Lim;Chae-Eun Yeo;Ho-jin Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.245-250
    • /
    • 2023
  • Digital twin technology, which copies information from real space into virtual space, is being used in a variety of fields.Interest in digital twins is increasing, especially in advanced manufacturing fields such as Industry 4.0-based smart manufacturing. Operating a digital twin system generates a large amount of data, and the data generated has different characteristics depending on the technology field, so it is necessary to efficiently manage resources and use an optimized digital twin platform technology. Research on digital twin pipelines has continued, mainly in the advanced manufacturing field, but research on high-speed pipelines suitable for data in the plant field is still lacking. Therefore, in this paper, we propose a pipeline design method that is specialized for digital twin data in the plant field that is rapidly poured through Apache Kafka. The proposed model applies plant information on a Revit basis. and collect plant-specific data through Apache Kafka. Equipped with a lightweight CFD engine, it is possible to create a digital twin model that is more suitable for the plant field than existing digital twin technology for the manufacturing field.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

Research on functional area-specific technologies application of future C4I system for efficient battlefield visualization (미래 지휘통제체계의 효율적 전장 가시화를 위한 기능 영역별 첨단기술 적용방안)

  • Sangjun Park;Jungho Kang;Yongjoon Lee;Jeewon Kim
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.109-119
    • /
    • 2023
  • C4I system is an integrated battlefield information system that automates the five elements of command, control, communications, computers, and information to efficiently manage the battlefield. C4I systems play an important role in collecting and analyzing enemy positions, situations, and operational results to ensure that all services have the same picture in real time and optimize command decisions and mission orders. However, the current C4I has limitations whenever a new weapon system is introduced, as it only provides battlefield visualization in a single area focusing on the battlefield situation for each military service. In a future battlefield that expands not only to land, sea, and air domains but also to cyber and space domains, improved command and control decisions will be possible if organic data from various weapon systems is gathered to quickly visualize the battlefield situation desired by the user. In this study, the visualization technology applicable to the future C4I system is divided into map area, situation map area, and display area. The technological implementation of this future C4I system is based on various data and communication means such as 5G networks, and is expected to enable hyper-connected battlefield visualization that utilizes a variety of high-quality information to enable realistic and efficient battlefield situation awareness.