• Title/Summary/Keyword: 수정체

Search Result 730, Processing Time 0.026 seconds

The etiologic factor of senile cataract and mechanism of occurance of diabetic cataract (노인성 백내장의 원인과 당이 백내장 발생에 미치는 영향에 대한 고찰)

  • Choi, Hae Jung;Chen, Ko Hsien
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • The most common cause of blindness is cataract. The possible causes, radiation, sugar, drugs, trauma, nutrition, congenital, secondary to eye disease etc. Generally, the opacification of the lens are the result fa oxidation of the lens fibers. The basis for lens transparency is the structural integrity of lens fibers. Opacities were occur if there is a significant amount of high molecular weight protein aggregates. If Ca ions combined with lens ${\alpha}$-crystallin proteins, the lens fibers were aggregated by high molecular weight proteins and the lens were opacified. If Ca ions detached from lens ${\alpha}$-crystallin proteins, the lens fibers were aggregated by low molecular weight proteins and the lens were re-cleared. We need to find out the variety of factors can initiated the process of age-related cataract. And to understanding the mechanism how the various kind, of diabetic cataracts occur.

  • PDF

Dose Distribution for Eye Shielding Block In 6 MV Photon Beam Therapy (6 MV 광자선치료에서 안구차폐기구의 제작과 선량분포 측정)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 1992
  • The eye lens is known to be radiosensitive organ and catarat can be induced by relatively low dose of radiation. In the treatment of head and neck tumors, shielding blocks are frequently used to minimize dose on sensitive organs. The shielding block, which is made of high atomic number materials (cerrobend), produce significant dose perturbations in megavoltage photon beams. The effects of these perturbations of eye shielding blocks are measured with film and ion chambers for the treatment of head and neck malignancies. Optimum parameters for the treatment are suggested.

  • PDF

Dose Assessment of Orbital Adnexa in Electron Beam Therapy for Orbital Lymphoma (안와림프종의 전자선 치료 시 안구 부속기관에 대한 선량평가)

  • Dong Hwan Kim;Yong In Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2024
  • Radiation side effects and complications on the ocular adnexa during electron beam therapy for orbital lymphoma can increase the incidence of posterior subcapsular cataracts. This study simulated a medical linear accelerator and a mathematical model of the eye using monte carlo simulations to evaluate the dose to the ocular adnexa and compare the shielding effectiveness on different parts of the ocular adnexa based on lens shield thickness. The dose assessment results of the ocular adnexa showed that the lens's sensitive area had the highest absorbed dose distribution when no shield was used, followed by the lens's non-sensitive area, the anterior chamber, vitreous humor, cornea, and eyelid in descending order. With the use of a shield, a 2 mm thick shield demonstrated a dose reduction effect of over 90% in the lens's sensitive area, over 83% in the non-sensitive area and anterior chamber, and a dose reduction effect of 30 to 62% in the vitreous body, cornea, and eyelid. For dose reduction in the lens's sensitive area during electron beam therapy for orbital lymphoma, it is necessary to use a shield of at least 2 mm thickness. Additionally, shielding strategies considering the thickness and area of the shield for other ocular adnexa besides the lens are required.

Limbal Lensectomy with or without Anterior Vitrectomy for the Management of Lens Subluxation (비외상성 수정체이탈 환자에서 시행한 윤부 수정체절제술)

  • Chang, Ju-Hee;Cha, Soon-Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.243-251
    • /
    • 2007
  • Purpose : This study was conducted to assess the surgical outcomes of limbal lensectomy with or without anterior vitrectomy for the management of lens subluxation. Materials and Methods : The medical records of 20 consecutive patients (33 eyes) with lens subluxation who had undergone limbal lensectomy with or without anterior vitrectomy from February 1999 to January 2004 were retrospectively reviewed. Results : All the patients, except one high axial myopic patient, were implanted with scleral sutured posterior chamber intraocular lens. We evaluated the preoperative, postoperative visual acuity and postoperative complications and compared the results in group I (limbal lensectomy with anterior vitrectomy, 27 eyes) to those in group II (limbal lensectomy without anterior vitrectomy, 6 eyes). The preoperative best-corrected visual acuity was 0.21 and postoperative best-corrected visual acuity was improved by 2 lines or more in all 27 eyes in group I, and in 5 eyes in group II (p>0.05). The most frequent postoperative complication was intraocular lens dislocation in four eyes (14.8%) in group I alone. No retinal detachment occurred in either group, even in patients with high myopia. Conclusion : Limbal lensectomy without anterior vitrectomy improved visual acuity similarly to limbal lensectomy with anterior vitrectomy without significant increase of postoperative complications. This results of this study suggest that anterior vitrectomy is not necessarily required for the management of lens subluxation.

  • PDF

Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography (CT 검사에서 유리선량계를 이용한 수정체의 비스무트 차폐 효과)

  • Jung, Mi-Young;Kweon, Dae-Cheol;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The purpose of our study was to determine the eyeradiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lensshielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eyewith the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lenswithout qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  • PDF

Comparison of Lens Dose in accordance with Bismuth shielding and Patient position in Brain perfusion CT (Brain Perfusion CT에서 Bismuth 차폐와 환자의 자세 변화에 따른 수정체 선량 비교 연구)

  • Gang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Brain perfusion CT scanning is often employed usefully in clinical conditions as it accurately and promptly provides information about the perfusion state of patients having acute ischemic stroke with a lot of time constraints and allows them to receive proper treatment. Despite those strengths of it, it also has a serious weakness that Lens may be exposed to a lot of dose of radiation in it. In this study, as a way to reduce the dose of radiation to Lens in brain perfusion CT scanning, this researcher conducted an experiment with Bismuth shielding and change of patients' position. TLD (TLD-100) was placed on both lens using the phantom (PBU-50), and then, in total 4 positions, parallel to IOML, parallel to IOML (Bismuth shielding), parallel to SOML, and parallel to SOML (Bismuth shielding), brain perfusion scanning was done 5 times for each position, and dose to Lens were measured. Also, to examine how the picture quality changed in different positions, 4 areas of interest were designated in 4 spots, and then, CT number and noise changes were measured and compared. According to the results of conducting one-way ANOVA on the doses measured, as the significance probability was found to be 0.000, so there was difference found in the doses of radiation to crystalline lenses. According to the results of Duncan's post-hoc test, with the scanning of being parallel to IOML as the reference, the reduction of 89.16% and 89.66% was observed in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding) respectively, so the doses to Lens reduced significantly. Next, in the scanning of being parallel to IOML (Bismuth shielding), the reduction of 37.12% was found. According to the results, reduction in the doses of radiation was found the most significantly both in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding). With the limit of the equivalent dose to Lens as the reference, this researcher conducted comparison with the dose to occupational exposure and dose to Public exposure in the scanning of being parallel to IOML and found 39.47% and 394.73% respectively; however in the scanning of being parallel to SOML (Bismuth shielding), considerable reduction was found as 4.08% and 40.8% respectively. According to the results of evaluation on picture quality, every image was found to meet the evaluative standards of phantom scanning in terms of the measurement of CT numbers and noise. In conclusion, it would be the most useful way to reduce the dose of radiation to Lens to use shields in brain perfusion CT scanning and adjust patients' position so that their lens will not be in the field of radiation.

Ultrastructure of the Compound Eye of the Rice Brown Planthopper, Nilaparvata lugens (StaL) (Homopteera : Auchenorhyncha : Delphacidae) (벼멸구 겹눈의 미세구조)

  • Young Nam Youn
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.266-277
    • /
    • 1995
  • The adult brown planthopper possesses tow oval shaped compound eyes which, on their ventral borders, curve around the base of the antennae. Compound eye of the adult brown planthopper is recognised apposition eye which each ommatidium is optically isolated from it surroundings, the rhabdoms receiving light only from their own corneal lens. Each ommatidium possesses its own dioptric apparatus formed from the cuticular cornea and an underlying crystalline cone. The retinula cells lying immediately beneath the crystalline cone have their individual rhabdomeres tightly opposed to form one central, closed rhbdom. The rhabdom stretches from the spex of the crystalline cone nearly to the basement membrane and is approximately 110~120 $\mu\textrm{m}$ in length. The crystalline cone is surrounded by a pair of primary pigment cells an these in turn are surrounded by accessory pigment cells. Accessory pigment cells extend beyond the crystalline cone surrounding the retinular cells in the distal region of the eye. The crystalline cone is surrounded by the distal-most regions of the retinula cells show the presence of seven cells and sections taken proximally in the last quarter of the omatidium before the basement membrane is reached, reveal the presence of a small, eighth retinula cell which also contributes to the central rhabdom. Each ommatidium has a central rhabdom formed from the modified inner border of all of the retinula cells. Th rhabdom consists of micrvilli arising from the inner wall of each retinula cell. In cross section th microvilli exhibit a characteristic honeycomb appearance. Pigment cells comprise the primary pigment cells enveloping the crystalline cone, the accessory pigment cells extending from the inner surface of the comea to the basement membrane and the small pigment cells of the basement membrane.

  • PDF

The Development of the Eye in the White Rat (백서안구의 초기발생)

  • 백경기;정경원
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 1966
  • 백서(Rattus horvegicus var. albinus) 50 두를 키우며 자성백서의 발정을 질정도말법으로 확인하여 임신케 한후 각 단계별로 80개의 배를 얻었다. 고정액은 Bouin's solution 과 Carnoy's solution II였으며 표본은 5-7$\mu$의 두께로 연속절편을 만들었다. 염색은 Delafield's hematoxylin 과 eosin-Y의 이중염색법과 신경섬유를 관찰하기 위하여 Ramoney Cajal's silver-nitrate method를 사용하였다. 실험결과는 안와가 stage 17에서 나타났고 안포가 stage 18에서 형성되었다. 심안포가 stage 19에서 형성되었고 망막판과 수정체판이 stage 21에서 형성되었으며 체표외배엽과 접촉하고 있는 안포의 부분은 stage 22(A)에서 안배를 형성하기 위해 몰입되었다. state 22 (B)에서 수정체공은 아직 열려 있었고 stage 23(A)에서 색소립이 망막의 색소층에 나타났고 수정체공이 닫혀졌다. 수정체와는 stage 23(B)에서 체표외배엽으로부터 분리되었고 수정체 내벽세포의 신장이 stage23(C)에서 시작되었다. 수정체강은 stage 25에서 수정체섬유에 의해서 인멸되었고 stage 26에서 홍채가 형성되기 시작하였다.

  • PDF

Analysis of Radiation Dose for Lens, Thyroid Gland, Breast, and Gonad on Upper Gastrointestinal Series (위장조영검사에서 수정체, 갑상선, 유방, 생식선에 대한 피폭선량 분석)

  • Lim, Byung-Hak;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.889-894
    • /
    • 2019
  • Upper gastrointestinal series is an examination that uses X-rays. It is important to defend against exposure to radiation during upper gastrointestinal examination because the organs, such as thyroid gland, lens, breasts, and gonads, with relatively high biological sensitivity to radiation are distributed on the examination area. We have made a whole body phantom that can change the depth of organs. radiation dose of eye, thyroid gland, breast and gonads were measured by the same procedure as the actual upper gastrointestinal examination. When performed only fluoroscopy the mean dose reduction of lens, thyroid gland, breast and gonads was 62.2%. The mean dose reduction of lens, thyroid gland, breast and gonads was 59.0% when both fluoroscopy and spot shoot were performed. Therefore, when performed upper gastrointestinal examination it was confirmed that shielding of the lens, thyroid gland, breast and gonads was effective in decreasing the exposure dose. The manufactured human phantom can be used in measuring radiation dose for deep organ because it can adjust the height corresponding to the organs located in the human body.

Radiation Dose of Lens and Thyroid in Linac-based Radiosurgery in Humanoid Phantom (선형가속기형 방사선수술시 인형 팬텀에서 수정체 및 갑상선 선량)

  • Kim, Dae-Yong;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.517-529
    • /
    • 1998
  • Purpose : Although many studies have investigated the dosimetric aspects of stereotactic radiosurgery in terms of target volume, the absorbed doses at extracranial sites: especially the lens or thyroid - which are sensitive to radiation for deterministic or stochastic effect -have infrequently been reported. The aim of this study is to evaluate what effects the parameters of radiosurgery have on the absorbed doses of the lens and thyroid in patients treated by stereotactic radiosurgery, using a systematic plan in a humanoid phantom. Materials and Methods : Six isocenters were selected and radiosurgery was planned using the stereotactic radiosurgery system which the Department of Therapeutic Radiology at Seoul National University College of Medicine developed. The experimental radiosurgery plan consisted of 6 arc planes per one isocenter, 100 degrees for each arc range and an accessory collimator diameter size of 2 cm. After 250 cGy of irradiation from each arc, the doses absorbed at the lens and thyroid were measured by thermoluminescence dosimetry. Results : The lens dose was 0.23$\pm$0.08$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the lens and was 0.76$\pm$0.12$\%$ of the maximum dose for each isocenter when the exit beam passed through the lens. The thyroid dose was 0.18$\pm$0.05$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the thyroid and was 0.41$\pm$0.04$\%$ of the maximum dose for each isocenter when the exit beam Passed through the thyroid. The passing of the exit beam is the most significant factor of organ dose and the absorbed dose by an arc crossing organ decides 80$\%$ of the total dose. The absorbed doses of the lens and thyroid were larger as the isocenter sites and arc planes were closer to each organ. There were no differences in the doses at the surface and 5 mm depth from the surface in the eyelid and thyroid areas. Conclusion : As the isocenter and arc plane were placed closer to the lens and thyroid, the doses increased. Whether the exit beams passed through the lens or thyroid greatly influenced the lens and thyroid dose. The surface dose of the lens and thyroid consistently represent the tissue dose. Even when the exit beam passes through the lens and thyroid, the doses are less than 1$\%$ of the maximum dose and therefore, are too low to evoke late complications, but nevertheless, we should try to minimize the thyroid dose in children, whenever possible.

  • PDF