• Title/Summary/Keyword: 수소 수율

Search Result 246, Processing Time 0.023 seconds

Adsoptive Properties of Cellulose Thermally Treated at Low Temperature and Its Solubility to Water (저온 열처리 셀룰로오스의 염기성가스 흡착과 용해특성)

  • Jo, Tae-Su;Ahn, Byung-Jun;Choi, Don-Ha;Akihiko, Miyakoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.63-70
    • /
    • 2005
  • The purpose of this study was to investigate how to modify the physical properties of cellulose after thermal treatment. Cellulose was treated between $225^{\circ}C$ and $325^{\circ}C$ for 3 hrs under air flow, and then the thermally treated cellulose was measured to specific surface area, constitute elements, consumption ofacid and base, as well as the adsorption capacity of ethylamine vapor. The higher was the treating temperature from $225^{\circ}C$ to $325^{\circ}C$, the lower was the total yield of cellulose. Elemental analysis revealed that carbon content in thermally treated cellulose was gradually increased in proportion to temperature increment. The amount of acidic functional groups tended to increase up to $300^{\circ}C$, after then to be lowered slightly. In principle, no alkaline functional groups were found in thermally treated cellulose. In case of treatment with $325^{\circ}C$, only a few amount of alkaline functional groups were detectable. Specific surface area of thermally treated cellulose are determined to $1.9m^2/g$, which value can become higher when the treated temperature rises. The thermally treated cellulose at $275^{\circ}C$ shows the highest adsorption capacity of ethylamine at $40^{\circ}C$ for 4 hrs. Solubility of those two celluloses with WPG (Weight Percent Gain) value of 113% and 108%, respectively, was determined to almost 100%. X-ray diffractogram of thermally treated cellulose suggested that the crystalline structure of cellulose began to be destroyed at the temperature of $275^{\circ}C$. As a conclusion, changes of such a physical properties make it possible to weaken inter and/or intra hydrogen bond in crystal region of cellulose macromolecules. When thermally treated cellulose adsorbs ethylamine, it turns to be well soluble to water.

The Effect of C-4 Substituent of 2-phenylimino-1,3-thiazolines on the Antifungal Activity Against Rice Blast (2-페닐이미노-1,3-티아졸린 유도체의 C-4 치환체가 벼도열병에 대한 항균활성에 미치는 영향)

  • Lim, Jung-Sup;Han, Min-Soo;Nam, Kee-Dal;Choi, Kyung-Ja;Hahn, Hoh-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2009
  • New morpholinylcarbonylmethyl-2-phenylimino-1,3-thiazolines 2(X=O) and piperidinylcarbonylmethyl-2-phenylimino-1,3-thiazolines 3(X=C) to which morpholinyl or piperidinyl functional group were introduced at C-4 side chain of the 2-phenylimino-1,3-thiazoline scaffold were synthesized to investigate the effect of NH hydrogen of 2-phenylimino-1,3-thiazoline-4-acetanilide derivatives on the antifungal property against rice blast. Synthesized 30 compounds were screened against 6 kinds of typical plant fungi. Treatment of ketene dimer with chlorine followed by the reaction of morphorine or piperidine without isolation of the intermediate acetoacetylchloride gave $\gamma$-chloro-$\beta$-keto derivatives. These were reacted with thioureas to give morpholinylcarbonylmethyl-2-phenylimino-1,3-thiazolines and piperidinylcarbonylmethyl-2-phenylimino-1,3-thiazolines respectively in good yield (27-98%). The compound 3j, in which two fluorine atoms are substituted at ortho and para position of phenyl group of 2-phenylimino moiety and piperidinyl group is substituted at C-4, showed the highest antifungal activity (100 ppm, 90%). This result suggested that the substituent at C-4 of the 2-phenylimino-1,3-thiazolines may play a supplementary role to show the antifungal activity against rice blast.

Efficient Triplet-triplet Annihilation-based Upconversion in Vegetable Oils (식물성 오일에서 구현되는 삼중항-삼중항 소멸법에 의한 Upconversion 분석)

  • Shin, Sung Ju;Choe, Hyun Seok;Park, Eun-Kyoung;Kyu, Hyun;Han, Sangil;Kim, Jae Hyuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • We herein report efficient triplet-triplet annihilation upconversion (TTA-UC) achieved in various non-toxic and non-volatile vegetable oils as a UC media using platinum-octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA) as a sensitizer and acceptor, respectively. Green-to-blue UC was readily achieved from PtOEP/DPA solution in vegetable oils with the quantum yield of 8% without any deoxygenation process. The UC efficiency was found to be significantly dependent on the contents of unsaturated hydrocarbon in vegetable oils and viscosity of the solution, as well. Though the Stern-volmer constant and quantum yield in vegetable oils were measured to be lower than those measured in the deaerated organic solvent, the quenching efficiency was still high enough to be 93%. In the sunflower oil, the UC threshold intensity ($I_{th}$) was approx. $100mW/cm^2$, which is far larger than the sunlight intensity, but we believe that the UC achieved in non-toxic and air-saturated media was still highly applicable to nontraditional visualization techniques such as bioimaging.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using (C10H8N2H)2Cr2O7 ((C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구)

  • Park, Young Cho;Kim, Young Sik;Kim, Soo Jong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.597-600
    • /
    • 2017
  • $(C_{10}H_8N_2H)_2Cr_2O_7$ was synthesized by reacting 4,4'-bipyridine and chromium (VI) trioxide. The structure of the product was characterized with FT-IR (infrared spectroscopy) and elemental analysis. The oxidation of benzyl alcohol using $(C_{10}H_8N_2H)_2Cr_2O_7$ in various solvents showed that the reactivity increased with the increase of the solvent dielectric constant, in the order of DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. In the presence of DMF, an acidic catalyst such as $H_2SO_4$ $(C_{10}H_8N_2H)_2Cr_2O_7$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet (고에너지밀도 펠릿제조를 위한 목재칩 반탄화 특성)

  • Lee, Jae-Won;Kim, Young-Hun;Lee, Soo-Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.385-389
    • /
    • 2012
  • In this study, torrefaction of mixed softwood chips under anoxic condition was performed to improve energy density and maintain consistent quality of biomass. Characteristics of torrefied biomass depending on reaction time (30 min) and temperature (240, 260,$280^{\circ}C$) were investigated. Torrefaction of mixed softwood chips significantly improved the heating value compared to that of untreated biomass. As the torrefaction temperature was increased, the carbon content of torrefied biomass increased from 46.55 to 55.73%, while its hydrogen and oxygen contents decreased from 6.00 to 5.87% and from 30.55 to 27.21%, respectively. Most of hemicelluloses and volatile compounds were removed during torrefaction. The highest heating value was 5132 kcal/kg when torrefaction was performed at$280^{\circ}C$ for 30 min. It implied that the heating value increased by 13% compared to that of original biomass. However, the condition of effective torrefaction was at $240^{\circ}C$ for 30 min when weight loss and energy yield was considered.

Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and CO2 (낮은 수소농도에서 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 스팀과 CO2에 대한 영향)

  • Kang, Suk-Hwan;Kim, Jin-Ho;Kim, Hyo-Sik;Ryu, Jae-Hong;Jeong, Ki-Jin;Yoo, Young-Don;Kim, Kwang-Jun
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this work, we performed the methanation with steam and synthesis gas of a low $H_2/CO$ ratio to develop a process for producing SNG (synthetic natural gas). In this experiment conditions, the water gas shift reaction and the methanation reaction take place at the same time, and insufficient supply of steam might cause the deactivation of the catalyst. Therefore, the reaction characteristics with the amount of steam was performed, and the methanation on syngas containing $CO_2$ of the high concentration were studied. As a result, the temperature in the catalyst bed decreased by the supply of steam, and the methanation and the water gas shift reaction occurred at the same time. Although methane yield slightly decreased at the methanation using syngas containing $CO_2$ of the high concentration, the long-term operation (1,000 h) in the experimental conditions of this study indicates that this condition is suitable for the new commercial scale SNG process.

A Newer Short Synthesis of dl-Muscone(Ⅰ) (새로운 짧은 경로로의 dl-Muscone 합성(Ⅰ))

  • Im, D.S.;Shin, D.H.;Park, D.K.
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.243-248
    • /
    • 1996
  • New routes have been developed for the practical syntheses of dl-Muscone(1) employing cyclopentadecanone(2) as the starting material. In this experiment, addition of bromine to cyclopentadecanone in dried E. Ether solution with a trace of $AlCl_3$ as the catalyst were produced 2-bromocyclopentadecanone(3). This process was enhanced formation of regioselective enolate anion at $C_2$ position. 2-Bromocyclopentadecanone was put into $Li_2CO_3$-LiBr-DMF solution at 140∼150$^{\circ}C$, were produced trans- and cis-2-cyclopentadecen-1-one(4) mixture. Other by-products were reduced by control of reaction temperature and time. Trans- and cis-2-cyclopentadecen-1-one(4) mixture was directly put into dried E. Ether solvent and induce to react dropwise with $CH_3MgBr-Cu_2Cl_2$ complex, all of them got into 1,4-addition, dl-Muscone (1) was formed as the result. Conculsion, through three steps procedure from cyclopentadecanone(2) to dl-Muscone(1), the pure dl-Muscone was obtained with the high proportion of 85%, and synthetic cost was able to be much lower than any other conventional methods as there were no chemical separating steps.

  • PDF

Azomethine Yilde Forming Photoreaction of N-(Tributylstannyl)methylphthalimide (N-(트리부틸스탄일)메틸프탈이미드의 아조메틴 일리드 형성 광화학 반응)

  • Jeong, Ho-Cheol;Park, Ki-Hyun;Park, Hea-Jung;Cho, Dae-Won;Yoon, Ung-Chan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2009
  • Investigation was conducted to examine whether photochemical reaction of N-(tributylstannyl)- methylphthalimide generates an azomethine ylide intermediate in its excited state as its silyl derivative N-(trimethylsilyl)methylphthalimide which has been observed to form an azomethine ylide. The irradiation of N-(tributylstannyl)methylphthalimide in $D_2O-CH_3$CN generates mono-deuterated N-methylphthalimide as an exclusive product which supports the efficient generation of azomethine ylide intermediate and its trapping by water molecule through a proto-destannylation pathway. However the generated tributylstannyl subsitiuted ylide was not observed to be trapped with a dipolarophile such as methyl acrylate and acrylonitrile present in the reactions which is in contrast with the ylide from N-(trimethylsilyl)methylphthalimide.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.