• Title/Summary/Keyword: 수소화 처리

Search Result 334, Processing Time 0.026 seconds

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구)

  • Choi, Sung Yeol;Jang, Young Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.765-771
    • /
    • 2018
  • In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

Solvent Extraction of Mo(VI) and W(VI) from Dilute Chloride Solution by Amine and Neutral Extractants (묽은 염산용액에서 아민과 중성추출제에 의한 몰리브덴(VI)과 텅스텐(VI)의 용매추출)

  • Le, Minh Nhan;Son, Seong Ho;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.55-61
    • /
    • 2019
  • The extraction behavior of Mo(VI) and W(VI) from dilute chloride solution was investigated by employing amine (Alamine308 and TEHA) and neutral extractants (TOP) in the solution pH range from 2 to 9. W (VI) was selectively extracted over Mo(VI) by these three extractants and TEHA led to the highest separation factor. Without the pretreatment protonation of the tertiary amines, the extraction percentage of the two metal ions decreased steadily to zero as solution pH increased to 9. The extraction behavior of the metals was discussed on the basis of the distribution diagram of each metal. Alamine 308 and TEHA were much better than TOP in extracting and separating the two metal ions.

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

Herbicidal Activities of Essential Oils from Pine, Nut Pine, Larch and Khingan Fir in Korea (국내산 소나무, 잣나무, 낙엽송, 분비나무 정유의 제초활성)

  • Yun, Mi Sun;Cho, Hae Me;Yeon, Bo-Ram;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • The objective of this research was to understand herbicidal activity of essential oils isolated from leaves of pine (Pinus densiflora), nut pine (Pinus koraiensis), larch (Larix kaempferi) and khingan fir (Abies nephrolepsis) in Korea. In a seed bioassay, essential oils of nut pine, larch and khingan fir inhibited the growth of rapeseed (Brassica napus) seedlings by 50% at 4,766, 1,865, $5,934{\mu}g\;ml^{-1}$, respectively, however, that of pine did not show any herbicidal effect. In a green house experiment, fall panicum, Southern crabgrass, sorghum, barnyardgrass, quackgrass, black nightshade, Indian jointvetch, velvet leaf, and Japanese morningglory were controlled in 24 hours by the foliar application of 10% essential oils from pine, nut pine, larch and khingan fir. The treated plant parts showed burndown effect, however, new shoots appeared 3 days after treatment. Results of GC-MS analysis showed that essential oils from pine, nut pine, larch and khingan fir contained 16, 25, 25, and 16 compounds, respectively, with hydrocarbons, alcohols, ketones, and esters. The major compounds of the essential oils were 3-carene, bornyl acetate, camphene, limonene, ${\alpha}$-pinene, ${\beta}$-pinene and ${\beta}$-phellandrene.

Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays ($Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.258-264
    • /
    • 2011
  • Glutathione (GSH) has important roles in cellular defense against oxidative stress, 1) direct scavenging of reactive oxygen species (ROS), and 2) coenzyme of ROS scavenging enzyme like glutathione peroxidases (GPx). GSH peroxidase reduces free hydrogen peroxide to water using 2GSH. $N$-acetyl-L-cysteine (NAC), one of the antioxidants, is used as a precursor for intracellular GSH. In this study, relation of GSH, NAC, and GSH peroxidase was investigated through transcriptional expression of $GPX1$ and $GPX2$, which are GSH peroxidase encoding genes, in yeast cells treated with 0 mM to 20 mM of NAC or in combination with 100 Gy gamma-rays. The transcriptional expression of $GPX1$ and $GPX2$ was induced by NAC and 100 Gy gamma-rays. The gene expression of both GSH peroxidases was decreased with increasing concentrations of NAC in irradiated yeast cells. These results suggest that elevation of intracellular GSH by NAC and oxidative stress and ROS generated from gamma-rays induces expression of GSH peroxidase genes, and that NAC can protect the yeast cells against ROS generated from gamma-rays through direct scavenging of ROS and transcriptional activation of GSH peroxidase.

Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi) (낙엽송(Larix kaempferi) 고밀도 에너지화를 위한 반탄화 최적조건 탐색)

  • Na, Byeong-Il;Ahn, Byoung-Jun;Cho, Sung-Taig;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.739-744
    • /
    • 2013
  • In this study, torrefaction was performed to improve fuel properties of Larch. The optimal condition for torrefaction was investigated by response surface methodology. The torrefaction temperature and time ranged $220{\sim}280^{\circ}C$ and 20~80 min, respectively. As the torrefaction temperature and time increased, the carbon content of torrefied biomass increased from 49.36 to 56.65%, while its hydrogen and oxygen contents decreased from 5.56 to 5.48% and from 37.62 to 31.67%, respectively. The weight loss and calorific value increased with SF, while energy yield decreased. At the severe torrefaction condition (SF 7), the weight loss and calorific value were 26.58% and 22.30 MJ/kg, respectively. The energy contained in torrefied biomass increased to 20.41%, when compared with the untreated biomass. As the torrefaction severity increased, the energy yield decreased due to the relatively high weight loss of biomass. Therefore, the highest energy yield was obtained at high calorific value and low weight loss of biomass (SF 5.72).

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals (설프히드릴 변형 화합물질들에 의한 양배추 포스포리파제 D의 시스테인 잔기의 특성)

  • Go, Eun-Hui
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.362-368
    • /
    • 2006
  • SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.

Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals (이산화탄소를 활용한 고부가화합물 제조기술의 경제성 평가연구)

  • Lee, Ji Hyun;Lee, Dong Woog;Gyu, Jang Se;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Choi, Jong Shin;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this $CO_2$ carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.