DOI QR코드

DOI QR Code

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S)

황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구

  • Choi, Sung Yeol (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Jang, Young Hee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
  • 최성열 (경기대학교 일반대학원 환경에너지공학과) ;
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2018.09.21
  • Accepted : 2018.10.10
  • Published : 2018.12.10

Abstract

In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

본 연구에서는 각종 환경기초시설에서 발생하는 악취 유발물질 중 $H_2S$를 처리하기 위한 하수슬러지 기반 흡착제의 흡착성능 증진을 위해 제조조건 중 탄화조건 최적화에 대한 연구를 수행하였다. 적용되는 흡착제는 하수처리장에서 발생하는 슬러지를 온도 및 승온속도와 같은 탄화조건을 달리하여 제조하였으며, 흡착제의 물리적 특성과 흡착성능과의 상관관계를 확인하였다. 실험결과 $10^{\circ}C/min$의 승온속도로 $900^{\circ}C$의 온도에서 탄화과정을 거친 슬러지의 흡착성능이 가장 우수하였으며, SEM, BET 분석을 통해 비표면적 및 기공특성(기공크기, 부피)이 흡착성능의 주요 인자임을 확인하였다. 최적 탄화조건 흡착제의 흡착성능을 증진시키기 위해 K 이온을 담지하였으나, 하수슬러지 기반 흡착제의 경우 큰 영향이 없는 것으로 확인하였다.

Keywords

GOOOB2_2018_v29n6_765_f0001.png 이미지

Figure 1. Photograph of sewage sludge sample derived from ‘E’ sewage treatment plant.

GOOOB2_2018_v29n6_765_f0002.png 이미지

Figure 2. Manufacturing procedure of sewage sludge adsorbent.

GOOOB2_2018_v29n6_765_f0003.png 이미지

Figure 3. Schematic diagram of H2S adsorption test reactor.

GOOOB2_2018_v29n6_765_f0004.png 이미지

Figure 4. Effect of the carbonization temperature on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).

GOOOB2_2018_v29n6_765_f0005.png 이미지

Figure 5. Effect of the active material coating on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).

GOOOB2_2018_v29n6_765_f0006.png 이미지

Figure 6. Pore size distributions of different temperature carbonized sludge adsorbents.

GOOOB2_2018_v29n6_765_f0007.png 이미지

Figure 7. SEM images of different temperature carbonized sludge adsorbents. A: 550CS, B: 700CS, C: 900CS, D: K/900CS.

GOOOB2_2018_v29n6_765_f0008.png 이미지

Figure 8. Effect of the carbonization heating rate on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).

GOOOB2_2018_v29n6_765_f0009.png 이미지

Figure 9. Pore size distribution of different carbonization heating rate sludge adsorbents.

GOOOB2_2018_v29n6_765_f0010.png 이미지

Figure 10. SEM images of different carbonization heating rate sludge adsorbents. A: 900CS (5), B: 900CS (10), C: 900CS (20).

GOOOB2_2018_v29n6_765_f0011.png 이미지

Figure 11. Effect of the KOH activation on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).

Table 1. Concentration of Hydrogen Sulfide and Gas Composition by Source

GOOOB2_2018_v29n6_765_t0001.png 이미지

Table 2. Proximate Analysis of Sewage Sludge Sample

GOOOB2_2018_v29n6_765_t0002.png 이미지

Table 3. Manufacturing Conditions of Sewage Sludge Adsorbent Samples

GOOOB2_2018_v29n6_765_t0003.png 이미지

Table 4. Experimental Condition in a Fixed Bed Reactor

GOOOB2_2018_v29n6_765_t0004.png 이미지

Table 5. BET Analysis Results of Different Temperature Carbonized Sludge Adsorbents

GOOOB2_2018_v29n6_765_t0005.png 이미지

Table 6. BET Analysis Results of Different Carbonization Heating Rate Sludge Adsorbents

GOOOB2_2018_v29n6_765_t0006.png 이미지

References

  1. J. S. Park, A study on the development of gas scrubber for removal of odor gas containing hydrogen sulfide and the ammonia, MS Dissertation, Inje University, Gimhae, Korea (2002).
  2. K. Y. Kim and J. H. Choi, Distribution characteristics of odorous compounds concentrations according to type of pig buildings, J. Korean Soc. Odor Res. Eng., 12(1), 27-37 (2013). https://doi.org/10.11161/jkosore.2013.12.1.27
  3. H. W. Ryu, K. S. Jo, T. H. Lee, and M. Huh, Management of offensive odors in swine production facilities: I. Domestic status and offensive odors in swine production, J. Korean Soc. Odor Res. Eng., 2(2), 69-77 (2003).
  4. G. Y. Kim, J. B. Park, C. N. Kim, and K. J. Lee, Field study of emission characteristics of ammonia and hydrogen sulfide by pig building type, J. Korean. Soc. Occup. Environ. Hyg., 16(1), 36-43 (2016).
  5. B. C. Ko, J. K. Lee, Y. S. Lee, M. G. Lee, and S. K. Kam, A study on odor emission characteristics of domestic sewage treatment facilities using composite odor concentration and hydrogen sulfide concentration, J. Environ. Sci., 21(11), 1379-1388 (2012).
  6. J. K. Kim, S. S Kim, S. C. Hong, E. D. Lee, and Y. Kang, Decomposition of EtOH and oxidation of H2S by using UV/photocatalysis system, Korean Chem. Eng. Res., 51(3), 297-302 (2013). https://doi.org/10.9713/kcer.2013.51.3.297
  7. C. K. Jung, Utilization of discarded tree debris for commercial production of activated carbon, final research report, Ministry of Agriculture, Food and Rural Affairs, Korea (2000).
  8. C. D. Park, J. Y. Youn, and Y. S. Park, Adsorption characteristics of H2S on adsorbent made by sewage sludge in fixed bed adsorption column, Korean Chem. Eng. Res., 50(4), 718-722 (2012). https://doi.org/10.9713/kcer.2012.50.4.718
  9. D. H. Jung, W. S. Baek, S. H. Kim, and Y. N. Chun, Adsorption characteristics of sewage sludge prepared by physical and chemical activation, J. Adv. Eng. Technol., 1(1), 91-97 (2008).
  10. J. B. Cho, H. Jang, M. J. Sohn, M. G. Kim, S. J. Kim, and S. C. Han, Study on removal feasibility of nitrogeneous malodor compounds using $AlPO_4$ zeolite manufactured from total phosphorus sludge, J. Korea Soc. Waste Manag., 30(7), 734-740 (2013). https://doi.org/10.9786/kswm.2013.30.7.734
  11. J. H. Bae, N. Y. Park, C. H. Lee, Y. K. Park, and J. K. Jeon, Adsorption performance of basic gas over pellet-type adsorbents prepared from water treatment sludge, Korean Chem. Eng. Res., 51(3), 352-357 (2013). https://doi.org/10.9713/kcer.2013.51.3.352
  12. D. H. Jung, M. S. Lim, J. S. Song, and Y. N. Chun, Development of a carbonization activator, J. Korean Ind. Eng. Chem., 20(1), 109-115 (2009).
  13. S. Y. Lee, A study on the surface characteristics and adsorption properties in carbonaceous materials. MS dissertation, Seoul National University of Technology, Seoul, Korea (2003).
  14. Y. C. Park, G. J. Jo, and J. H. Choe, Production and $CO_2$ adsorption characteristics of activated carbon from bamboo by $CO_2$ activation method, Korean Chem. Eng. Res., 43(1), 146-152 (2005).
  15. G. C. Lee, T. K. Yoon, and Z. H. Shon, Effect of operating parameters on the physical properties of activated carbon manufactured with bead-type polymer resin, Clean Technol., 19(3), 279-286 (2013). https://doi.org/10.7464/ksct.2013.19.3.279
  16. B. Krystyna, B. Wieslaw, and K. Marek, Carbon adsorbents from waste ion-exchange resin, Carbon, 40(12), 2213-2220 (2002). https://doi.org/10.1016/S0008-6223(02)00091-X
  17. K. Y. Cho, K. J. Kim, and D. H. Riu, Effect of heating rate and pressure on pore growth of porous carbon Materials, Carbon Sci., 7(4), 271-276 (2006).
  18. S. K. Lee, C. S. Yim, and Y. S. Park, $H_2S$ adsorption characteristics and property analyses of activated carbon adsorbent impregnated with basic solutions, J. Korean Soc. Environ. Eng., 32(11), 1011-1016 (2010).

Cited by

  1. 활성탄 흡착탑의 실용화를 위한 최적 유동특성 선정 및 열처리 조건에 따른 황화수소 포집능 향상 연구 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1084