• Title/Summary/Keyword: 수소전달반응

Search Result 90, Processing Time 0.024 seconds

Studies on the Synthesis of 1-Hydroxycarbapenems (1-히드록시카르바페넴의 합성에 관한 연구)

  • You, Jong Hyeon;Park, Jeong Ho;Goo, Yang Mo;Lee, Yun Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • (3S,4S)-1-(t-Butoxycarbonylmethyl)-3-[(S)-1-(t-butyldimethylsilyloxy)ethyl]-4-(2-diazo-2-ethoxycarbonyl-1-oxoethyl)-2-azetidinone (14) was prepared from 4-styryl-2-azetidinone 7b via a sequence of reactions involving N-alkylation with bromoacetate, ozonolysis, oxidation, condensation with magnesium ethyl malonate, and diazo transfer reaction. (3S,4S)-3-[(S)-1-(t-Butyldimethylsilyloxy)ethyl]-4-(3-diazo-3-ethoxycarbonyl1-hydroxypropyl)-2-azetidinone (21) was also prepared from 4-formyl-2-azetidinone 5b via a sequence of reactions involving Wittig reaction, 1,3-dipolar cycloaddition with ethoxycarbonylformonitrile oxide, catalytic hydrogenation, and diazotization. However, the final cyclization of 14 or 21 to 1-hydroxycarbapenem or 1-hydroxycarbapenam by treating with $Rh_2(OAc)_4$ was unsuccessful.

  • PDF

Effects of 3D Flow-Channel Configurations on the Performance of PEMFC using Computational Fluid Dynamics (전산유체역학을 이용한 PEMFC의 성능에 대한 3차원 유로 구조의 영향)

  • Han, Kyoung-Ho;Yoon, Do Young
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.847-853
    • /
    • 2016
  • Here has been examined a 3-dimensional computational fluid dynamics (CFD) modeling in order to investigate the performance analysis of proton exchange membrane (PEM) fuel cells with serpentine flow fields. The present CFD model considers the isothermal transport phenomena in a fuel cell involving mass, momentum transport, electrode kinetics, and potential fields. Co-current flow patterns for a PEMFC are considered for various geometries in the single straight cell. Current density distribution from the calculated distribution of oxygen and hydrogen mass fractions has been determined, where the activation overpotential has been also calculated within anode and cathode. CFD results showed that profiles differ from those simulations subjected to each the calculated activation overpotential. It is interesting that the present serpentine flow field shows the specific distribution of current density with respect to the aspect ratio of depth to width and the ratio of reaction area for various serpentine geometries. Simulation results were considered reasonable with the other CFD results reported in literature and global comparisons of the PEMFC model.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Direction (유동방향 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Many researches for effects of different flow configurations on performance of Proton Exchange Membrane Fuel Cell have extensively been done but the effects of flow direction at the same flow channel shape should be considered for optimal operation of fuel cell as well. In this paper a numerical computational methode for simulating entire reactive flow fields including anode and cathode flow has been developed and the effects of different flow direction at parallel flow was studied. Pressure drop along the flow channel and density distribution of reactant and products and water transport, ion conductivity across the membrane and I-V performance are compared in terms of flow directions(co-flow or counter-flow) using above numerical simulation method. The results show that the performance under counter-flow condition is superior to that under co-flow condition due to higher reactant and water transport resulting to higher ion conductivity of membrane.

Azomethine Yilde Forming Photoreaction of N-(Tributylstannyl)methylphthalimide (N-(트리부틸스탄일)메틸프탈이미드의 아조메틴 일리드 형성 광화학 반응)

  • Jeong, Ho-Cheol;Park, Ki-Hyun;Park, Hea-Jung;Cho, Dae-Won;Yoon, Ung-Chan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2009
  • Investigation was conducted to examine whether photochemical reaction of N-(tributylstannyl)- methylphthalimide generates an azomethine ylide intermediate in its excited state as its silyl derivative N-(trimethylsilyl)methylphthalimide which has been observed to form an azomethine ylide. The irradiation of N-(tributylstannyl)methylphthalimide in $D_2O-CH_3$CN generates mono-deuterated N-methylphthalimide as an exclusive product which supports the efficient generation of azomethine ylide intermediate and its trapping by water molecule through a proto-destannylation pathway. However the generated tributylstannyl subsitiuted ylide was not observed to be trapped with a dipolarophile such as methyl acrylate and acrylonitrile present in the reactions which is in contrast with the ylide from N-(trimethylsilyl)methylphthalimide.

Growing Behaviors in Colloidal Solution of Pt Crystal for PEMFC Cathode (콜로이드 용액 내의 수소연료전지 공기극 촉매용 백금 입자 성장 속도 관찰)

  • Ham, Kahyun;Chung, Sunki;Choi, Mihwa;Yang, Seugran;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.493-498
    • /
    • 2019
  • In polymer exchange membrane fuel cells, it is crucial to fabricate a highly active and thin Pt catalyst layer for the smooth mass transport of dissolved oxygen and water. Although a highly loaded platinum (Pt) catalyst based on the hydrothermal synthesis has been reported in several studies, its growing behaviors and kinetics were yet to be understood. In this study, we investigated the growth of Pt crystal in suspension after the reduction step depending on a stirring time and evaluated the electrochemical activity. For only a couple of hours in the early stage, Pt colloids were adsorbed on the Pt-carbon catalyst and the Pt crystal was grown. After that, the small Pt colloid was formed by another nucleation step, which did not involve the growth of Pt crystal. We reveal that the Pt-Carbon catalyst with stirring for 6 h showed a high activity toward the oxygen reduction reaction.

High-Temperature Structural Analysis of a Small-Scale PHE Prototype - Analysis Considering Material Properties in Weld Zone - (소형 공정열교환기 시제품 고온구조해석 - 용접부 물성치를 고려한 해석 -)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1289-1295
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component for transferring the considerable heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a small-scale PHE prototype made of Hastelloy-X is underway in a small-scale gas loop at the Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed using base material properties. In this study, a high-temperature structural analysis considering the mechanical properties in the weld zone was performed, and the obtained results were compared with those of the previous research.

High-Temperature Structural Analysis of a Medium-Scale Process Heat Exchanger Prototype (중형 공정열교환기 시제품 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1283-1288
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component for transferring the considerable heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a medium-scale PHE prototype made of $Hastelloy^{(R)}$-X is scheduled in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a preliminary study before carrying out the performance test in the gas loop, high-temperature structural analysis modeling and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints were carried out under the gas loop test condition. The results obtained in this study will be compared with the performance test results of the medium-scale PHE prototype in the gas loop.

Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat (영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거)

  • Min, Jee-Eun;Kim, Mee-Jeong;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1074-1081
    • /
    • 2006
  • As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZVI. For biological degradation of TCE and denitrification peat soil was introduced. ZVI reduced TCE, while peat provided TCE sorption site and microbes performing biological degradation. Nitrate reduction was also achieved by hydrogen from ZVI. In addition, indirect evidence of denitrification was observed. More reduction of TCE and nitrate was achieved by ZVI+peat treatment however nitrated reduction was hindered in the presence of TCE in the system due to the competition for hydrogen. TCE reduction mechanism was more dependent on ZVI, while nitrate was peat-dependent. Hydrogen and methane concentration showed that peat had various anaerobic denitryfing and halorespiring bacteria.

Macroscopic High-Temperature Structural Analysis of PHE Prototypes Considering Weld Material Properties (용접 물성치를 고려한 공정열교환기 시제품의 거시적 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1095-1101
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component that transfers the large amount of heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a small-scale and a medium-scale PHE prototype made of Hastelloy$^{(R)}$-X is being conducted on in a small-scale nitrogen gas loop at the Korea Atomic Energy Research Institute. Previous research on the macroscopic high-temperature structural analysis of PHE prototypes had been performed using base material properties owing to a lack of weld material properties. In this study, macroscopic high-temperature structural analyses considering the weld material properties were performed and the results were compared with those of a previous study.

Fuel Supply of Direct Carbon Fuel Cells via Thermal Decomposition of Hydrocarbons Inside a Porous Ni Anode (다공성 니켈 연료 전극 내부에서 탄화수소의 열분해를 통한 직접 탄소 연료 전지의 연료공급)

  • Yi, Hakgyu;Li, Chengguo;Jalalabadi, Tahereh;Lee, Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.527-534
    • /
    • 2015
  • This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at $700^{\circ}C$ with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.