• Title/Summary/Keyword: 수소저장 및 발생

Search Result 65, Processing Time 0.028 seconds

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Catalytic Hydrolysis of Sodium Borohydride on LiCoO3 - Supported Pt, Ru Catalysts (LiCoO3에 담지된 Pt, Ru 촉매에 의한 NaBH4 가수분해반응)

  • Ahn, Jong-Gwan;Choi, Seung-Hoon;Lee, Su-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3261-3266
    • /
    • 2012
  • Sodium borohydride($NaBH_4$) known as the material of hydrogen generation and storage can produce the hydrogen via catalytic hydrolysis. This protide chemical could be used in the hydrogen supply system for residential and mobile fuel cells, and thus many researches and developments regarding to these chemicals and decomposition reactions have been implemented. We experimented the hydrolysis of $NaBH_4$ alkaline solution by metal oxide-supported PGM(platinum group metal) catalysts and measured the generation rate of hydrogen which is product of decomposition reaction. We compared oxides as catalyst supports, and the precious metals, Pt and Ru for the catalysts and studied the effects of amounts of catalyst added and $NaBH_4$ concentrations on the hydrogen generation rates and patterns.

Safety Analysis of Potential Hazards at Hydrogen Refueling Station (수소충전소 잠재적 위험에 대한 안전성해석)

  • Park, Woo-Il;Kim, Dong-Hwan;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • This study was conducted using FLACS, a specialized gas accident analysis program. Hydrogen refueling stations subject of safety analysis, consist of compression facilities, storage tanks, and hydrogen piping. The safety analysis of potential risk factors was conducted after reflecting the design specifications of major facilities and components, environmental conditions around hydrogen refueling stations, etc. As of 2021, about 70 refueling stations in Korea are available, and 1,200 are scheduled to be introduced in the next 2040. To prepare for possible accidents caused by potential hazards for the safe distribution of hydrogen refueling stations, we intend to derive hydrogen leakage diffusion scenarios and review their safety.

Research Trend and Prospect of Membranes for Water Electrolysis (수전해용 분리막 연구 동향 및 전망)

  • Lee, Jae Hun;Cho, Won Chul;Kim, ChangHee
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.4
    • /
    • pp.1-21
    • /
    • 2021
  • 화석연료의 과도한 사용으로 유발된 기후변화 문제를 해결하기 위해 대체에너지의 개발에 대한 관심이 높아지고 있는 가운데 재생가능하며 친환경적인 수소에너지가 실현가능한 궁극적 대안으로 주목받고 있다. 다양한 수소 생산 기술 중 물의 전기분해를 이용한 수전해 기술은 온실가스와 같은 오염물질을 배출하지 않으며 재생에너지와 연계하여 미이용 전력을 대용량 장주기로 저장할 수 있다는 장점이 있다. 수전해 장치는 수소와 산소를 발생하는 전극과 기체의 섞임을 방지하고 이온을 전달하는 분리막으로 구성되며 그 중 분리막은 수전해 장치의 효율과 안정성을 결정짓는 핵심 부품이다. 본 총설에서는 수전해 기술 중 저온 수전해에 해당하는 알칼라인 수전해(alkaline water electrolysis), 고분자전해질막 수전해(polymer electrolyte membrane water electrolysis)와 음이온교환막 수전해(anion exchange membrane water electrolysis)에 사용되는 분리막에 대한 특성을 분석하고 최근 연구 동향에 대해서 다루고자 한다.

Fuel cell system for SUAV using chemical hydride - II. Lightweight fuel cell propulsion system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - II. 경량 연료전지 추진 시스템)

  • Hong, Ji-Seok;Park, Jin-Gu;Sung, Myeong-Hun;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • A 100 W fuel cell system using chemical storage method has been applied for a propulsion system of the SUAV(Small Unmanned Aerial Vehicle). A fuel cell and battery have been combined for both the small/light hydrogen generation control system and the hybrid power supply system. A small hydrogen generation device was implemented to utilize NaBH4 aqueous solution and dead-end type PEMFC system, which were evaluated on the ground and by the flight tests. The system pressurized at a 45kpa stably operates and get higher fuel efficiency. The pressure inside of the hydrogen generation control system was maintained at between 45 kPa and 55 kPa. The 100W fuel cell system satisfies the required weight and power consumption rate as well as the propulsion system, and the fuel cell system performance was demonstrated through flight test.

The Characteristics and Stability of Ion Exchange Membrane in All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 2차전지에서 이온교환막의 특성 및 안정성)

  • 신석재;강안수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.63-64
    • /
    • 1993
  • 레독스-흐름 2차전지는 발전소의 잉여전력, 태양전지 및 전기자동차 등 응용 분야가 넓은 유망한 에너지 저장 방법의 하나이다[1,2]. Fe-Cr계 2차전지와 비교하여 수소 가스의 발생이 없고 양쪽 액의 확산에의한 혼합으로 전지의 용량이 떨어지지 않고 rebalance의 필요가 없는 등 많은 장점을 가지고 있으며 조작이 간단하며 기전력 (1,4 V)과 에너지 밀도가 높기 때문에 compact화가 가능하다[1].

  • PDF

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

Study of Technology for Energy Recovery from Landfill Gas using Hydrate Method (하이드레이트 형성 원리를 이용한 매립지가스 에너지화 기술에 대한 연구)

  • Moon, Donghyun;Shin, Hyungjoon;Han, Kyuwon;Lee, Jaejung;Seok, Mingwang;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.219.2-219.2
    • /
    • 2010
  • 가스하이드레이트(gas hydrate)는 고압과 저온 조건에서 물분자간의 수소결합으로 형성되는 3차원 격자구조에 동공(cavity)이라는 빈 공간이 생기고 이 동공에 가스가 물리적으로 포획되어 생성되는 것으로, 수소결합을 하는 물의 격자(Host) 내에 메탄등의 저분자가스(Guest)가 포획된 결정체이다. 가스 하이드레이트는 미량의 물을 첨가, 가압하면 부피비로 약 200배의 가스를 고상의 형태로 저장할 수 있으며, 열역학적으로 안정된 결정체이기 때문에 하이드레이트로 존재하기 위한 최소한의 온도, 압력조건이 충족되면 고상으로 항구적인 존재가 가능할 수 있어 가스의 수송 및 저장에 높은 경제성을 가지는 방법이다. 현재 운영중인 전국의 242개소 매립지 중에서 발전 및 연료로 활용가능한 조건을 같춘 자원화 대상 매립지는 약 14곳에 불과한 형편이고 이들 중 대부분 시설은 자원화 시설을 운영하고 있으나. 중소규모 매립지에서 발생하는 LFG에 대하여 효율적인 이용 및 처리 방안이 없어 태워 없어지거나 방치하는 등 매립가스를 활용하는 기술은 미흡한 실정이다. 이러한 LFG는 많은 환경적인 문제를 야기하지만, 50vol% 이상의 고농도 메탄이 함유되어 있어 이를 대체에너지원으로 이용할 경우 환경적인 문제를 해결함과 동시에 신재생에너지원으로 활용 가능하다. 본 연구에서는 중소규모 매립지에서 발생하는 LFG를 활용하기 위하여 하이드레이트 형성/해리 Pilot plant의 제작을 통하여 $CH_4$$CO_2$(단일, 복합가스의 실험)의 하이드레이트화 연구를 진행 중이다.

  • PDF

Analysis on the Explosion Risk Characteristic of Hydrogen blended Natural Gas (HCNG 혼합연료의 폭발 위험 특성 분석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Kwon, Jeong-Rak
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2014
  • This study investigated the explosion characteristics of HCNG fuel using a simulation tool. The damage caused by the storage container explosion and vapor cloud explosion in a gas station was predicted. In case of an vapor cloud explosion in the HCNG station, 50~200kPa explosion pressure was predicted inside the station. When the cylinder explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. The damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.