• Title/Summary/Keyword: 수리 영역

Search Result 373, Processing Time 0.023 seconds

History of the College Scholastic Ability Test in Mathematics Section (대학수학능력시험 수학(수리) 영역 변천사)

  • Jeon, Young Ju
    • Journal for History of Mathematics
    • /
    • v.26 no.2_3
    • /
    • pp.177-195
    • /
    • 2013
  • This study is the analysis of the concepts and the characteristics of the mathematics section of the College Scholastic Ability Test. The study starts with division of the history of the College Scholastic Ability Test into four periods. These are Introduction Period(school year 1994-1996), Adjustment Period(school year 1997-2004), Development Period(school year 2005-2011) and Conversion Period(up to present since school year 2012). The periodical division of the Mathematics section is considered as identical with that of the College Scholastic Ability Test. So we investigate the characteristics of the Mathematics section through the periodical classification. This study also proposes some tasks for the future Mathematics section of the College Scholastic Ability Test.

Defining the hydraulic excavation damaged zone considering hydraulic aperture change (수리적 간극변화를 고려한 수리적 굴착손상영역의 정의에 관한 연구)

  • Park, Jong-Sung;Ryu, Chang-Ha;Lee, Chung-In;Ryu, Dong-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition, displacement, groundwater flow conditions have been altered due to the processes induced by the excavation. Various studies have been carried out on EDZ, but most studies have focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the 'hydraulic EDZ' was defined as the rock zone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation by using H-M coupling analysis. Fundamental principles of distinct element method (DEM) were used in the analysis. In the same groundwater level, the behavior of hydraulic aperture near the cavern was analyzed for different stress ratios, initial apertures, fracture angles and fracture spacings by using a two-dimensional DEM program. We evaluate the excavation induced hydraulic aperture change. Using the results of the study, hydraulic EDZ was defined as an elliptical shape model perpendicular to the joint.

  • PDF

지하유류저장시설 주변의 단열암반 내 지하수유동체계 해석

  • Jo Seong-Il;Kim Cheon-Su;Bae Dae-Seok;Kim Gyeong-Su;Park Gyeong-U;Song Mu-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.292-295
    • /
    • 2005
  • 본 연구는 지하유류저장공동 굴착 시 비교적 정밀하게 해석된 단열체계 및 수리인자를 토대로 투수성구조영역과 수리암반영역으로 세분화하여 연구지역의 불규칙하고 복잡한 지하수유동체계를 해석해 보고자 하였다. FZ-2 구조대와 인접한 수리암반영역 Domain-A와 B는 Domain-C와 D에 비해 수평수벽공의 초기압이 최대 약 $15kg/cm^2$정도 높으며, 상 하부의 수리적 연결성이 양호하여 지하공동굴착 시 상 하부의 수위차가 크지 않고 지하수 함양량은 약 $35{\sim}50mm/year$의 범위를 보인다. 또한 공동굴착 시 투수성 단열과의 교차에 의한 수위강하에 민감한 반응을 보이며 상 하부의 수위강하양상이 유사한 특성을 나타낸다. 반면, FZ-1 구조대와 인접한 Domain-C와 D는 지하공동 부근의 수리전도도가 각각 $7{\times}10^{-10},\;2{\times}10^{-9}m/sec$로 Domain-A와 B에 비해 최대 약 6배정도 낮고, 상 하부의 수리적 연결성이 양호하지 않기 때문에 공동굴착 전 이중수위측정시설 설치 시 계측된 상 하부의 수위차는 최대 약 120 m로 매우 크다. 그리고 상부의 지하수는 하부의 낮은 수리전도도로 인하여 수직방향보다 수평방향으로의 유동이 우세하며 공동굴착 시 수위변화는 크지 않고 함양량은 $10{\sim}15mm/year$의 범위를 나타낸다.

  • PDF

Direction of Revision of College Scholastic Ability Test Through Literature Review (문헌분석을 통한 대학수학능력시험 수리영역의 개정 방향 탐색)

  • Ko, Ho-Kyoung
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.3
    • /
    • pp.467-481
    • /
    • 2008
  • This paper analysed a bulk of theses performed in various perspectives relating to College Scholastic Ability Test since 1994. Further this searched suggestions of revisions of systems about College Scholastic Ability Test along with the revised curriculum throngh this analysis of previous studies, which were categorized into 'correspondence between goal and characteristics', 'impact on education', and 'impact on society'. According to previous studies, they treat crossing application, advantage & disadvantage among optional subjects, difference in subject and content between natural science and cultural science, subjects that have to be included into College Scholastic Ability Test. This research suggests some elements and basic & fundamental information which need to be considered in the process of revising in problem making system of College Scholastic Ability Test.

  • PDF

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field (불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험)

  • Lee, Kang-Kun
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.90-99
    • /
    • 1994
  • Heterogeneous hydraulic conductivity in a flow domain is generated under the assumption that it is a random variable with a lognormal, spatially-correlated distribution. The hydraulic head and the conductivity in a groundwater flow system are represented as a stochastic process. The method of Monte Carlo Simulation (MCS) and the finite element method (FEM) are used to determine the statistics of the head and the logconductivity. The second moments of the head and the logconductivity indicate that the cross-covariance of the logconductivity with the head has characteristic distribution patterns depending on the properties of sources, boundary conditions, head gradients, and correlation scales. The negative cross-correlation outlines a weak-response zone where the flow system is weakly responding to a stress change in the flow domain. The stochastic approach has a potential to quantitatively delineate the zone of influence through computations of the cross-covariance distribution.

  • PDF

An Analysis Region Virtualization Scheme for Built-in Redundancy Analysis Considering Faulty Spares (불량 예비셀을 고려한 자체 내장 수리연산을 위한 분석 영역 가상화 방법)

  • Jeong, Woo-Sik;Kang, Woo-Heon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.24-30
    • /
    • 2010
  • In recent memories, repair is an unavoidable method to maintain its yield and quality. The probability of defect occurence on spare lines has been increased through the growth of the density of recent memories with 2 dimensional spare architecture. In this paper, a new analysis region virtualization scheme is proposed. the analysis region virtualization scheme can be applied with any BIRA (built-in redundancy analysis) algorithms without the loss of their repair rates. The analysis region virtualization scheme can be a viable solution for BIRA considering the faulty spare lines of the future high density memories.

Factors of Predicting Difficulty of Mathematics Test Items in College Scholastic Ability Test (고등학교 수리영역 시험의 난이도 예측 요인 분석)

  • Ko, Ho-Kyoung;Yi, Hyun-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.1
    • /
    • pp.113-127
    • /
    • 2007
  • This study explored the possibility of building a statistical model predicting difficulty of mathematics test items through the analysis of nation-wide scholastic ability test results for the past 5 years. Multiple linear regression analysis was conducted in predicting difficulty of mathematics test items. We adopted three major areas for independent variables: the content area, the behavior area, and the test item format area, each of which was categorized into more detailed sub-areas. For the dependent variable, the proportion of correct answer was used to represent the item difficulty. Statistically significant independent variables were included in the regression model based on the stepwise selection method. Several important factors affecting difficulty of mathematics test items for each area were identified. R-squares for the final regression model were fairly high, implying that the regression equation can be used to predict difficulty of test items at an acceptable level. Lastly, the regression model was cross-validated using independently collected data. We believe that this study will provide basic but very critical information for predicting the proportion of correct answer by showing the factors that should be considered for developing mathematics test items for the college entrance examination or high school classroom test.

  • PDF

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Improvement of Two-layer Model using Reynolds Stress Distribution of Vegetated Open-channel Flows (침수식생 개수로의 레이놀즈응력분포를 이용한 2층모형 개선)

  • Yang, Won-Jun;Choi, Sung-Uk;Choi, Byung-Woong;Bae, Hye-Deuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.515-519
    • /
    • 2010
  • 본 연구에서는 침수식생 개수로 흐름의 평균유속 및 다양한 난류량 예측이 가능한 해석적 모형의 비교 분석을 수행하였다. 각 모형의 비교분석에 사용한 수리실험자료는 기존의 다양한 연구자가 제시한 실험결과를 이용하였다. 레이놀즈응력의 경우, 상부영역에서는 선형분포를 가정한 두 모형 모두 수리실험자료와 잘 일치하였다. 그러나 식생영역의 경우 3층모형에서 가정한 지수함수 형태의 레이놀즈응력은 실험자료와 잘 일치하지 않는 것으로 나타났다. 평균유속의 경우, 삼층모형에서 새로이 추가된 내부식생영역은 전체적인 예측결과에 큰 영향을 미치지 않는 것으로 나타났지만, 전체적인 평균유속 예측결과는 두 모형 모두 비교적 유사하였다. 본 연구를 통하여 분석된 2층모형과 3층모형의 장점만을 취합하여 이층모형의 정확성을 개선하였다. 기존 수리실험자료를 이용하여 식생수로의 레이놀즈응력분포식을 최적화된 멱함수 형태로 제시하였다. 개발된 모형을 기존 수리실험자료에 적용한 결과 특정 조건을 제외하고는 비교적 정확하게 식생흐름의 평균유속분포를 예측하는 것으로 나타났으며, 이는 식생 및 흐름조건에 의해 식생영역의 레이놀즈응력분포형태가 왜곡되어있을 경우인 것으로 분석되었다.

  • PDF